网络爬虫爬取淘宝页面商品信息

本文分享了使用网络爬虫爬取淘宝商品信息的方法,重点介绍了如何绕过登录界面,正确获取商品详情。通过在Google Chrome中登录并利用开发者工具获取cookie,配合Python的requests库实现网页抓取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络爬虫爬取淘宝页面商品信息

最近在MOOC上看嵩老师的网络爬虫课程,按照老师的写法并不能进行爬取,遇到了一个问题,就是关于如何“绕开”淘宝登录界面,正确的爬取相关信息。通过百度找到了答案,在此记录一下。

注意:你需要先用自己的淘宝登录一下然后获得cookie才是有效的。

针对以上问题主要的代码是

kv = {'cookie':'','user-agent':'Mozilla/5,0'}
r = requests.get(url,headers=kv,timeout=30)

会在最后附上全代码(不含cookie)

那么问题的关键就是cookie的获取

(1)首先需要用到Google chrome浏览器登录淘宝
(2)然后就是按F12键进入开发者模式
(3)按照以下图片进行点击
在这里插入图片描述

以下是“完整”代码:

import requests
import re

def getHTMLText(url):
    kv = {'cookie':'','user-agent':'Mozilla/5,0'}
    try:
        r = requests.get(url,headers=kv,timeout=30)
        r.encoding = r.apparent_encoding
        return r.text
    except:
        return ""

def parsePage(ilt,html):
    try:
        plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"',html)
        tlt = re.findall(r'\"raw_title\"\:\".*?\"',html)
        for i in range(len(plt)):
            price = eval(plt[i].split(':')[1])
            title = eval(tlt[i].split(':')[1])
            ilt.append([price,title])
    except:
        print("")

def printGoodsList(ilt):
    tplt = "\t{:^4}{:^8}\t{:^16}" 
    count = 0
    print(tplt.format("序号",'价格','名称'))
    for i in ilt:
        count = count + 1
        print(tplt.format(count,i[0],i[1]))
        
def main():
    goods='书包'
    depth = 2
    infoilt = []
    start_url = 'https://s.taobao.com/search?q='+goods
    for i in range(depth):
        try:
            url = start_url + '&s=' + str(44*i)
            html = getHTMLText(url)
            parsePage(infoilt,html)
        except:
            continue
    printGoodsList(infoilt)
    
main()    

PS:该文章仅用于学术探讨。/笑脸

### 使用Python虫抓取淘宝商品评论 在数字化时代,数据的价值日益凸显,尤其是对于电商平台而言,商品评论作为用户反馈的重要载体,蕴含着丰富的信息。为了有效获取这些有价值的信息,可以采用Python编程语言中的多种库和技术来实现自动化数据采集。 #### 发送HTTP请求 要从网页上提取所需的内容,首先要向目标网址发起网络请求。这可以通过`requests`库轻松完成: ```python import requests def send_request(url, headers=None): try: response = requests.get(url, headers=headers) if response.status_code == 200: return response.text else: print(f"Failed to retrieve data with status code {response.status_code}") return None except Exception as e: print(e) return None ``` 此函数尝试访问指定URL,并返回服务器响应的HTML源码字符串[^2]。 #### 解析HTML文档 一旦获得了页面内容,则需对其进行解析以便定位到具体的元素位置。这里推荐使用`BeautifulSoup`库来进行DOM操作: ```python from bs4 import BeautifulSoup def parse_html(html_content): soup = BeautifulSoup(html_content, 'html.parser') comments_section = [] items = soup.find_all('div', class_='comment-content') # 假设这是包含每条评论的标签 for item in items: comment_text = item.get_text(strip=True) comments_section.append(comment_text) return comments_section ``` 这段代码会遍历所有匹配给定CSS类名的选择器节点,并收集其中的文字部分形成列表形式的结果集[^1]。 #### 处理分页加载更多评论 许多现代Web应用程序采用了异步更新的方式显示更多信息,在这种情况下可能需要模拟浏览器行为以触发额外的数据加载过程。此时可以考虑引入像`selenium`这样的工具包来驱动真实环境下的浏览器实例执行JavaScript脚本: ```python from selenium import webdriver from time import sleep driver = webdriver.Chrome() try: driver.get(product_page_url) while True: load_more_button = driver.find_element_by_css_selector('.load-more-button') if not load_more_button.is_displayed(): break load_more_button.click() sleep(2) # 等待新内容加载完毕再继续循环体内的其他指令 finally: html_source = driver.page_source driver.quit() comments_list = parse_html(html_source) print(comments_list[:5]) # 打印前五条评论查看效果 ``` 上述片段展示了如何通过点击按钮的形式逐步揭示隐藏起来的商品评价记录[^3]。 请注意,实际应用过程中还需注意遵守各平台的服务条款及法律法规规定;另外由于网站结构经常变动,因此建议定期维护所编写的虫逻辑确保其持续可用性。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值