【OpenCV入门学习--python】直观看图体会边缘检测与语义分割的差别

本文探讨了图像处理中的边缘检测技术,如Canny算法和拉普拉斯算子,以及索贝尔算子在边缘提取中的应用。边缘检测能够突出图像的细节,而语义分割则用于隐藏不重要细节,强调大范围边缘。根据图像复杂度和需求,选择合适的图像处理方法至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原图

在这里插入图片描述
在这里插入图片描述

分割处理:

在这里插入图片描述

canny边缘检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

拉普拉斯算子Laplacian():

在这里插入图片描述

索贝尔算子Sobel operator提取边缘:

在这里插入图片描述
**

总结: 边缘检测可以把复杂的细节检测出来,语义分割把不重要的细节遮盖,显示大的边缘。按照图像的复杂程度和实际需要,来选择图像处理是采用边缘检测还是语义分割。

**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值