机器学习专栏
xiaopar_
这个作者很懒,什么都没留下…
展开
-
机器学习之分类算法
如果目标值为 类别, 则属于分类问题,使用分类算法 1、sklearn转换器和预估器(估计器) 转换器 —特征工程的父类 1)实例化(实例化的是一个转换器类(Transformer)) 2)调用fit_transform(对于文档建立分类词频矩阵,不能同时调用) fit_transform(X) 方法是由 fit() 方法和 transform() 方法封装而成 比如,在标准化的时候,标准化的公式:x’ = (x - mean) / std fit()方法干的事情就是计算传进去的数据中每一列的标准差和平均值原创 2020-09-09 22:46:40 · 3591 阅读 · 1 评论 -
机器学习入门
人工智能小案例: 请使用科学上网工具打开链接 案例一:https://quickdraw.withgoogle.com/ 案例二:https://pjreddie.com/darknet/yolo/ 案例三:https://deepdreamgenerator.com/ 人工智能的发展历程: 图灵测试: 测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。多次测试(一般为5min之内),如果有超过30%的测试者不能确定被测试者是人还是机器 ,那么这台机器就通过了...原创 2020-09-09 22:43:58 · 1403 阅读 · 0 评论 -
机器学习之回归与聚类算法
线性回归** (属于回归算法,解决回归问题,即目标值为连续性的数据) 应用场景:房价预测,销售额度预测,贷款额度预测 定义:线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。 线性关系: 通用公式(线性模型): h(w) = w1x1 + w2x2 + w3x3 + … + b —自变量一次 x1,x2,x3代表特征值,h(w)为目标值(或者用y来表示),w1,w2,w3为权重值(也叫回归系数),b为偏置。 其中原创 2020-09-09 22:40:45 · 2192 阅读 · 0 评论