三角形面积公式:
2
×
d
×
h
2 × d × h
2×d×h,
d
=
R
2
−
W
2
d = \sqrt{R^2-W^2}
d=R2−W2
扇形面积公式:
1
2
θ
R
2
\cfrac{1}{2}θR^2
21θR2,θ 为弧度制的角度;
设扇形的角度大小为 A,由
c
o
s
A
=
3
4
cosA = \cfrac{3}{4}
cosA=43,得
A
=
a
c
o
s
(
3
4
)
A = acos(\cfrac{3}{4})
A=acos(43)。
p
i
2
−
2
×
A
=
θ
\cfrac{pi}{2} - 2 × A = θ
2pi−2×A=θ
import java.util.*;import java.math.*;import java.io.*;publicclassMain{staticclassSolution{voidinit(){int R =2;double pi =3.14159265358979;double d = Math.sqrt(7);double S1 =0.5* d *1.5;double A = Math.acos(3.0/4.0);double ang = pi/2.0-2*A;double S2 =0.5* ang * R*R;
System.out.printf("%.2f", S1*4+S2*4);}}publicstaticvoidmain(String[] args)throws IOException {
Solution s =newSolution();
s.init();}}