Leetcode.0128 | 最长连续序列

题目

给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。

请你设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例

输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
输入:nums = [0,3,7,2,5,8,4,6,0,1]
输出:9

解决方法

对数组中的每个数x进行遍历,以它为起点,不断尝试寻找数组中是否含有x+1,x+2,x+3...假设最终匹配到了x+y,那么数组中含有从x到x+y的连续序列,长度为y+1。最外层对数组中每个数进行遍历的过程,时间复杂度为O(n),内层对x+1,x+2...每个数的寻找都需要O(N)的时间复杂度,这样时间复杂度就为O(n^{3})

对于匹配的过程,暴力的方法是 O(n) 遍历数组去看是否存在这个数,但其实更高效的方法是用一个哈希表存储数组中的数,这样查看一个数是否存在即能优化至 O(1) 的时间复杂度。这样,时间复杂度会降到O(n^2).

为了使得时间复杂度降到O(n),就需要排除掉一些不必要的枚举。由于我们要枚举的数 x 一定是在数组中不存在前驱数 x-1 的,不然按照上面的分析我们会从 x-1 开始尝试匹配,因此我们每次在哈希表中检查是否存在 x-1, 即能判断是否需要跳过了。

代码实现

class Solution {
    public int longestConsecutive(int[] nums) {
        Set<Integer> data = new HashSet<Integer>();
        for (int num : nums) {
            data.add(num);
        }
        int res = 0;
        for (int num : data) {
            if (data.contains(num - 1)) {
                continue;
            }
            else{
                int currentNum = num;
                int currentRes = 1;
                while (data.contains(currentNum + 1)) {
                    currentNum += 1;
                    currentRes += 1;
                }
                res = Math.max(currentRes, res);
            }
        }

        return res;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值