题目
给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n) 的算法解决此问题。
示例
输入:nums = [100,4,200,1,3,2] 输出:4 解释:最长数字连续序列是[1, 2, 3, 4]。它的长度为 4。
输入:nums = [0,3,7,2,5,8,4,6,0,1] 输出:9
解决方法
对数组中的每个数x进行遍历,以它为起点,不断尝试寻找数组中是否含有x+1,x+2,x+3...假设最终匹配到了x+y,那么数组中含有从x到x+y的连续序列,长度为y+1。最外层对数组中每个数进行遍历的过程,时间复杂度为O(n),内层对x+1,x+2...每个数的寻找都需要O(N)的时间复杂度,这样时间复杂度就为
对于匹配的过程,暴力的方法是 O(n) 遍历数组去看是否存在这个数,但其实更高效的方法是用一个哈希表存储数组中的数,这样查看一个数是否存在即能优化至 O(1) 的时间复杂度。这样,时间复杂度会降到.
为了使得时间复杂度降到O(n),就需要排除掉一些不必要的枚举。由于我们要枚举的数 x 一定是在数组中不存在前驱数 x-1 的,不然按照上面的分析我们会从 x-1 开始尝试匹配,因此我们每次在哈希表中检查是否存在 x-1, 即能判断是否需要跳过了。
代码实现
class Solution {
public int longestConsecutive(int[] nums) {
Set<Integer> data = new HashSet<Integer>();
for (int num : nums) {
data.add(num);
}
int res = 0;
for (int num : data) {
if (data.contains(num - 1)) {
continue;
}
else{
int currentNum = num;
int currentRes = 1;
while (data.contains(currentNum + 1)) {
currentNum += 1;
currentRes += 1;
}
res = Math.max(currentRes, res);
}
}
return res;
}
}