基于联邦学习的移动边缘计算的隐私感知服务放置

基于联邦学习的移动边缘计算的隐私感知服务放置

这是我读完 “Privacy-aware service placement for mobile edge computing via federated learning ” 这篇论文的一个概括和个人想法。

概要:移动边缘计算是现在很火的一个话题,移动边缘云可以在网络边缘部署存储和计算资源,为用户提供对延迟敏感的服务。但边缘服务器的资源有限,不可能在边缘云上部署所有服务。因此,许多现有的工作已经解决了怎么在移动边缘云上安排服务以更好地向用户提供服务质量(QoS)的问题。这些工作需要根据现有的服务放置策略,收集用户请求服务的历史数据进行分析。然而,这些历史数据可能侵犯了用户的隐私。这篇论文就提出了一种隐私感知服务代理(PSP)方案来解决边缘云系统中的服务放置问题。

1.系统模型和问题的制定

1.1系统概述

我们假设本文的系统具有一个移动边缘云和多个移动设备。
设N为移动设备集合,其索引为N ={1,2,···,N}。每个移动设备都可以通过无线信道与边缘云通信。
设这个边缘云的计算能力(最大CPU频率)为C,用于处理服务。
设这个边缘云的存储容量为S,可以用来存储与服务相关的数据。
B u B^u Bu B d B^d Bd 分别为上行链路和下行链路的带宽,也就是用户所需要的上传和下载服务。

因为边缘云的计算、存储和通信资源是有限的,并不是所有的服务都可以放在那里。
在这里插入图片描述

如图所示,如果将边缘云中的服务提前放置在边缘云上,如Type-4服务,则边缘云可以满足用户的服务需求。但是,如果用户请求的服务没有预先缓存在边缘云上,则用户需要通过蜂窝网络从远程云获取服务,就会产生一定程度的延迟,例如Type-2服务。因此,需要确定哪些服务可以放置在边缘云上,以最大限度地满足用户的服务需求。

1.2 服务模型

假设服务集K ={1, 2,···,K},代表不同的服务。每个服务所需的计算、存储和通信资源是不同的。比如,与视频相关的服务需要更多的通信和存储资源。让 c k c_k ck s k s_k sk r k u r_k^u rku r k d r_k^d rkd分别表示第k种服务的要求计算、存储和通信资源。设k∈{0,1}表示服务k是否放置在边缘云上( a k a_k ak = 1、 a k a_k ak = 0)。如果 a k a_k ak = 1,用户可以从该边缘云获取服务k;如果 a k a_k ak=0,则用户无法从边缘云获取服务k,用户将从远程云获取服务,由此带来较长时间的延迟。

1.3 用户的偏好模型

d n . k d_{n.k} dn.k是用户n请求服务k的次数,用户请求的次数与用户对服务的偏好相关。如果一个用户喜欢某个服务,那么这个用户通常会请求该服务。因此,需要学习用户的偏好模型来获得请求的次数。
请求次数可以用 d n . k d_{n.k} dn.k= f k ( x ( n ) ) f_k(x(n)) fk(x(n))这个公式来表示, x ( n ) x(n) x(n)属于用户的上下文信息,例如年龄、地址等等。 x ( n , k ) x(n,k) x(n,k)是经过归一化的, f n ( . ) f_n(.) fn(.)是请求次数与用户偏好之间的非线性关系。
我们利用 s i g m o i d sigmoid sigmoid函数来估计用户对服务k的偏好 :在这里插入图片描述
其中, θ n θ_n θn是重量参数, p n . k p_{n.k} pn.k是用户对服务k的偏好程度。

1.4 问题公式化

设置服务放置时,应该满足以下3点:
(i)放置在边缘云上的服务所需的存储容量应小于边缘云的最大存储容量。
在这里插入图片描述
(ii)运行在边缘云上的服务应不大于边缘云的总计算能力。
在这里插入图片描述
(iii)边缘云上业务的上行和下行通信带宽不应超过边缘云的最大通信带宽。
在这里插入图片描述
服务放置方案的目标是最大化边缘云的服务数量,同时保护用户隐私。则可以公式化为:
在这里插入图片描述
C5: a k a_k ak∈{0,1}

2.隐私感知服务安置计划

为了保护用户的隐私,利用分布式联邦学习来了解用户对服务的偏好。然后利用贪心算法实现服务布局方案。

2.1 用联邦学习求用户偏好

移动用户可以使用自己收集的数据在自己的设备上来训练偏好模型,然后将参数卸载到边缘云进行更新。边缘云对参数进行更新后,反馈给移动设备。移动设备根据新参数再次训练,得到用户偏好模型。 这样用户就不需要把涉及隐私的数据上传到边缘云上,只需要上传模型即可。
首先,利用移动设备来更新参数。设第n个用户的物流损失为
l l l( x n x_n xn, y ( k ) y(k) y(k); θ n θ_n θn)我们用梯度下降法求解这个损失函数。因此,当它在第j次迭代时,我们可以得到 θ n ( j + 1 ) θ_n^{(j+1)} θn(j+1)= θ n ( j ) θ_n^{(j)} θn(j)- η ( j ) η_{(j)} η(j) g ( j ) g_{(j)} g(j) , j j j= 1 1 1,2……
其中在这里插入图片描述 是关于 θ n θ_n θn的梯度向量, η ( j ) η_{(j)} η(j)是学习速率,第n个移动设备的迭代终止条件为:|| θ n ( j + 1 ) θ_n^{(j+1)} θn(j+1)- θ n ( j ) θ_n^{(j)} θn(j)||≤ε,ε是一个很小的数,通过上面的分析我们 就可以得到N个参数 θ 1 θ_1 θ1 θ 2 θ_2 θ2…… θ N θ_N θN.然后,边缘云更新上述参数。对n项参数进行均匀训练。因此,用户只需要将经过训练的结果发送到边缘云,而不是将所有用户的隐私数据发送到边缘云。这样既可以保护用户的隐私,又可以得到一个训练模型。

2.2 服务放置的贪婪算法

对于优化问题P1,它是一个0-1的优化问题。基于背包问题,我们可以得到这个优化问题是一个NP困难的问题。为了解决这个问题,我们使用了贪心算法。首先,能够最大限度提高目标功能的服务可以放在边缘云上。然后,将次要服务放置在边缘云上。剩下的工作可以以相同的方式完成,直到所有服务的计算、通信或存储资源达到边缘云的上限。

3.仿真和性能分析

这边我还没有做实验,后续文章将补全。可以参考原文

3.1 算法的比较

将PSP算法与以下两种算法进行了比较。随机服务放置策略和流行服务放置策略)。
•随机服务放置策略,即每次从服务库中随机选择服务,直到所放置的所有服务的计算、通信或存储资源达到边缘云的上限。
•流行的服务放置策略,估计每个服务的请求模式基于用户偏好和地方服务在云为了根据请求模式直到计算、通信、或存储资源的服务达到边缘云的上限。

3.2 性能分析

分析不同的服务放置方案对边缘云的计算、存储和通信资源的影响。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从图2到图4,横坐标分别表示边缘云的计算、存储和通信资源,纵坐标表示在边缘云上处理请求的百分比。
可以看出PSP的性能优于其他两种方案。

总结

这篇分析了考虑有限的计算、存储和通信资源的边缘云上的服务放置方案,并将其建模为0-1优化问题。其次,使用分布式联邦学习来学习用户的偏好,并使用贪心算法来解决优化问题。在此基础上,提出了一种既能保护用户隐私又能降低远程云服务负载的PSP方案。仿真结果表明,与其它方案相比,该方案具有更高的效率。
在未来的工作中,将考虑在几个边缘云上使用PSP。

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值