自写哈夫曼树的文件压缩和解压

萌新自己写的一些关于哈夫曼树的压缩以及解压缩,欢迎大佬指导
void HuffmanTree::getiosnum(unsigned char c, unsigned char iosarray[8])//获取字符c的二进制编码,用长度为8的数组存储返回,在译码时用到
{
int x = (int)c;
int p = 1, y = 0, yushu, i = 7;
while (1)
{
yushu = x % 2;
x /= 2;
iosarray[i] = yushu + 48;//
–i;//
if (x < 2){ iosarray[i] = x + 48; break;}//if
}//while
}
void HuffmanTree::Encoding()//编码
{
string s, cod, codios;
unsigned char c;
fstream file(“CodeFile.txt”, ios::out|ios::binary);//打开存储压缩了编码的文件
fstream outfile(“CodePrin.txt”, ios::out);//用来存储字符型式‘0’‘1’的文件
Getnumber(root, s);//获取哈夫曼树的字符对应的01编码
fstream fp;
int num = 0;
//fp.open(“ToBeTran.txt”, ios::in);
fp.open(“book.txt”, ios::in);//打开待压缩的未编码文件
//cout << “原文件ToBeTran的数据。” << endl;//测试文件
while (fp.read((char*)&c, sizeof©)) {
cout << c;
for (int n = 0; n < i; n++) {
if (c == Codesave[n].data) cod += Codesave[n].code;
}//与之前编码的个字符匹配编码,编码成字符型0.1,加入string cod中
}
outfile << cod;
outfile.close();
//压缩编码系统
num = 0;
int number=0;
for (int n = 0; n < cod.length(); n++) {
number += ((int)cod[n]-48)pow(2, 7 - num);
num++;
if (num % 8 == 0 ) {//将字符型的0,1转化成十进制,满八位转换成unsigned char字符输出到文件
c = number;
file << c;
number = num = 0;
}
}
/
//还没写好的,编码文件的最后如果不满八位的情况
if (num % 8 != 0) {
c = number;
unsigned char arr[8];
getiosnum(c, arr);
for (int i = 0; i < 8; i++) {
if (num > 0) { arr[i] = arr[8 - num]; num–; }
else arr[i] = ‘0’;
}
number = 0;
for (int i = 0; i < 8; i++) {
number += ((int)arr[i] - 48)pow(2, 7 - i);
}
cout << number << endl;
c = number;
file << c;
}
/
//file << codios;
//file << cod;
file.close();
fp.close();
}
void HuffmanTree::Decoding() {//译码
unsigned char c;
HuffmanNode p = root;
fstream file(“CodeFile.txt”, ios::in|ios::binary);
fstream fp(“TextFile.txt”, ios::out);
cout << “将已编码文件CodeFile转变成原有的字符为:” << endl;
while (file.read((char
)&c, sizeof©)) {
unsigned char arr[8];
for (int i = 0; i < 8; i++) arr[i] = ‘0’;//初始化数组
getiosnum(c,arr);//获取字符c对应的二进制编码
for (int i = 0; i < 8; i++) {//哈夫曼树译码
if (arr[i] == ‘0’) { p = p->leftchild; }
else if (arr[i] == ‘1’) { p = p->rightchild; }
if (p->leftchild == 0 && p->rightchild == 0)
{
cout << p->data; fp << p->data; p = root;
}
}
}
cout << endl;
}

综合实验: 1. 问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站编写一个哈夫曼码的编/译码系统。 2. 基本要求 一个完整的系统应具有以下功能: (1) I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。 (2) E:编码(Encoding)。利用已建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。 (3) D:译码(Decoding)。利用已建好的哈夫曼树文件CodeFile中的代码进行译码,结果存入文件Textfile中。 (4) P:印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行50个代码。同时将此字符形式的编码文件写入文件CodePrin中。 (5) T:印哈夫曼树(Tree printing)。将已在内存中的哈夫曼树以直观的方式(比如树)显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint 中。 3. 测试数据 用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的编码和译码:“THIS PROGRAME IS MY FAVORITE”。 字符 A B C D E F G H I J K L M 频度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符 N O P Q R S T U V W X Y Z 频度 57 63 15 1 48 51 80 23 8 18 1 16 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值