P2763 试题库问题

题目描述

问题描述:

假设一个试题库中有 nn 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 mm 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。

编程任务:

对于给定的组卷要求,计算满足要求的组卷方案。

输入格式

第一行有两个正整数 kk 和 nn。kk 表示题库中试题类型总数,nn 表示题库中试题总数。

第二行有 kk 个正整数,第 ii 个正整数表示要选出的类型 ii 的题数。这 kk 个数相加就是要选出的总题数 mm。

接下来的 nn 行给出了题库中每个试题的类型信息。每行的第一个正整数 pp 表明该题可以属于 pp 类,接着的 pp 个数是该题所属的类型号。

输出格式

输出共 kk 行,第 ii 行输出 i: 后接类型 ii 的题号。
如果有多个满足要求的方案,只要输出一个方案。
如果问题无解,则输出No Solution!。


题解:
将所有的试题类型与超级源点相连,权值设置为k[i],然后将题库中每个试题都拆点,这样保证每个试题都只选一次,然后入点连接所属类型,出点连接超级汇点就OK了,输出的时候加个bel数组表示当前边属于哪个试题


AC代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define LL long long
const int MAXN = 5000+50;
const int MAXM = 2e6+50;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int n,k,s,t,tot=1,head[MAXN],to[MAXM],nxt[MAXM],w[MAXM],h[MAXN];
int a[MAXN],bel[MAXN],p[MAXN];
inline void ade(int u,int v,int ww){
    to[++tot]=v; w[tot]=ww; nxt[tot]=head[u]; head[u]=tot;
}
inline void add(int u,int v,int w){ ade(u,v,w); ade(v,u,0); }
inline int bfs(){
    queue<int> que; que.push(s); memset(h,0,sizeof(h)); h[s]=1;
    while(!que.empty()){
        int u=que.front(); que.pop();
        for(int i=head[u];i;i=nxt[i]){
            if(w[i] && !h[to[i]]){
                h[to[i]]=h[u]+1; que.push(to[i]);
            }
        }
    }
    return h[t];
}
inline int dfs(int x,int f){
    if(x==t) return f; int fl=0;
    for(int i=head[x];i&&f;i=nxt[i]){
        if(w[i] && h[to[i]]==h[x]+1){
            int mi=dfs(to[i],min(f,w[i]));
            w[i]-=mi; w[i^1]+=mi; fl+=mi; f-=mi;
        }
    }
    if(!fl) h[x]=-1;
    return fl;
}
inline int dinic(){
    int res=0;
    while(bfs()) res+=dfs(s,INF);
    return res;
}
signed main(){
#ifndef ONLINE_JUDGE
    freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUDGE
    scanf("%d%d",&k,&n); s=0,t=n+k+1; int sum=0;
    for(int i=1;i<=k;i++) scanf("%d",&a[i]),sum+=a[i];
    for(int i=1;i<=k;i++) add(s,i,a[i]);
    for(int i=1;i<=n;i++) add(k+n+i,t,1);
    for(int i=1;i<=n;i++) add(k+i,k+n+i,1);
    for(int i=1;i<=n;i++){
        scanf("%d",&p[i]);
        for(int j=1,x;j<=p[i];j++) scanf("%d",&x),add(x,i,1),bel[tot]=i;
    }
    int res=dinic();
    if(res!=sum){ puts("No Solution!");return 0; }
    for(int i=1;i<=k;i++){
        printf("%d:",i);
        for(int k=2;k<=tot;k+=2){
            if(to[k]==s || to[k^1]==s) continue;
            if(to[k]==t || to[k^1]==t) continue;
            if(to[k^1]==i && w[k^1]) printf(" %d",bel[k^1]);
        } puts("");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值