Problem Description
一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),设计一个时间复杂度为O(N)、空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:交换操作会有多次,每次交换都是在上次交换完成后的顺序表中进行。
Input
第一行输入整数len(1<=len<=1000000),表示顺序表元素的总数;
第二行输入len个整数,作为表里依次存放的数据元素;
第三行输入整数t(1<=t<=30),表示之后要完成t次交换,每次均是在上次交换完成后的顺序表基础上实现新的交换;
之后t行,每行输入一个整数m(1<=m<=len),代表本次交换要以上次交换完成后的顺序表为基础,实现前m个元素与后len-m个元素的交换;
Output
输出一共t行,每行依次输出本次交换完成后顺序表里所有元素。
Sample Input
10
1 2 3 4 5 6 7 8 9 -1
3
2
3
5
Sample Output
3 4 5 6 7 8 9 -1 1 2
6 7 8 9 -1 1 2 3 4 5
1 2 3 4 5 6 7 8 9 -1
Hint
Source
思路:进行三次逆置,首先逆置前m个,再逆置后面len-m个,最后整体逆置
#include <stdio.h>
#include <stdlib.h>
#define MAXSIZE 1000005
typedef struct
{
int data[MAXSIZE];
int listSize;
} seqlist;
void init_list(seqlist *list, int len) // 初始化并创建顺序表
{
list->listSize = len;
for (int i = 0; i < list->listSize; i++)
{
scanf("%d", &list->data[i]);
}
}
void exchange(seqlist *list, int n, int m) // 逆置函数
{
int i, j;
for (i = n,j = m; i <= j; i++, j--)
{
int t = list->data[i];
list->data[i] = list->data[j];
list->data[j] = t;
}
}
int main()
{
int len;
seqlist* list;
int t;
list = (seqlist*)malloc(sizeof(seqlist));
scanf("%d", &len);
init_list(list, len);
scanf("%d", &t);
while(t--)
{
int m;
scanf("%d", &m);
// 注意数组下标
exchange(list, 0, m-1); // 逆置前m个
exchange(list, m, list->listSize-1); // 逆置后len-m个
exchange(list, 0, list->listSize-1); // 整体逆置
for (int i = 0; i < list->listSize; i++)
{
if (i == list->listSize-1)
{
printf("%d\n", list->data[i]);
}
else
{
printf("%d ", list->data[i]);
}
}
}
}