1.对于任何的东西无非就是: 明确需求 选择模型 语言实现
而对于实现语言进行分模块 预先处理 训练 检测验证 评价
2.世界上一切基本都可用机器实现 无论抽象具象
有的一些数学上面的加减 就是机械性的 一些设定好的机器人行为 机械性的
神经网络 训练后是一种决策性 思考性的
3.NLP而言 其实就是
需求:完成预测工作
选择模型:对应不同神经网络
语言实现:预处理数据,对应参数把网络搭起来,训练数据得到参数,验证性能,评价报告
1.对于任何的东西无非就是: 明确需求 选择模型 语言实现
而对于实现语言进行分模块 预先处理 训练 检测验证 评价
2.世界上一切基本都可用机器实现 无论抽象具象
有的一些数学上面的加减 就是机械性的 一些设定好的机器人行为 机械性的
神经网络 训练后是一种决策性 思考性的
3.NLP而言 其实就是
需求:完成预测工作
选择模型:对应不同神经网络
语言实现:预处理数据,对应参数把网络搭起来,训练数据得到参数,验证性能,评价报告