Description
John有h个小时的时间想去钓鱼。(1<=h<=16).有n个池塘(2<=n<=25),它们的分布沿着一条单行的小路。John从第一个池塘处出发,他可以沿着小路向前走,在想停下来的池塘处钓鱼,对于路径的终点没有限制。为了钓到最多的鱼,John对各个池塘做了调查。若给路径上的池塘依次编号,,则对于每个池塘,开始钓鱼时,每5分钟内期望是可以钓到f[i]条鱼,随着时间的推移,每过5分钟,可以钓到的鱼减少d[i]条。若某个5分钟的时间段内可以钓到的鱼少于等于d[i],则下一个5分钟在这个池塘就钓不到鱼了。用t[i]表示从池塘 i 到池塘 i+1 所需要的时间。单位是5分钟(==!), 即:若t[3] = 4,表示从池塘3到池塘4需要4*5=20分钟。John在每个池塘钓鱼的时间都必须是5的倍数。求期望能钓到最多鱼的钓鱼计划,并输出在每个池塘钓鱼的时间(分钟为单位)和能钓到的鱼总数。当有多个方案都是最优解时,选择在第一个湖的时间最长的方案,若仍相等,选择在第二个湖时间最长的方案,依此类推。
Input
每个测试用例,首先给出池塘数n,然后是时间h(小时为单位),接下来的两行分别有n个整数,分别表示f[i]和d[i],接下来的一行为n-1个整数,表示t[i].n为0时表示输入结束。
Output
对于每个测试用例,第一行依次输出在每个池塘的停留时间(分钟为单位),每个时间之间用逗号+空格分开。第二行输出能钓到的最多的鱼的数量,格式见Sample.
 其余要求同首题。
Sample Input
2 
1 
10 1 
2 5 
2 
4 
4 
10 15 20 17 
0 3 4 3 
1 2 3 
4 
4 
10 15 50 30 
0 3 4 3 
1 2 3 
0 
Sample Output
45, 5 
Number of fish expected: 31 
240, 0, 0, 0 
Number of fish expected: 480 
115, 10, 50, 35 
Number of fish expected: 724
 
                   
                   
                   
                   
                             本文探讨了一个钓鱼爱好者John在有限时间内如何在一系列池塘中制定最佳钓鱼计划的问题。通过分析每个池塘的初始钓鱼效率、效率衰减率以及池塘间的转移时间,目标是在满足时间约束的情况下最大化钓鱼数量。文章详细描述了输入格式,包括池塘数量、总时间、钓鱼效率、效率衰减及转移时间,并给出了输出格式,即每个池塘的最佳停留时间和预期的总钓鱼数。
本文探讨了一个钓鱼爱好者John在有限时间内如何在一系列池塘中制定最佳钓鱼计划的问题。通过分析每个池塘的初始钓鱼效率、效率衰减率以及池塘间的转移时间,目标是在满足时间约束的情况下最大化钓鱼数量。文章详细描述了输入格式,包括池塘数量、总时间、钓鱼效率、效率衰减及转移时间,并给出了输出格式,即每个池塘的最佳停留时间和预期的总钓鱼数。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1346
					1346
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            