dijkstra vector存图,堆优化模板hdu2544

该博客介绍了如何利用Dijkstra算法解决一个图论问题,即从节点1到节点n的最短路径。尽管数据规模较小,博主仍然选择了采用堆优化的优先队列来确保效率,按距离从小到大排序节点,从而快速找到最近的节点。
摘要由CSDN通过智能技术生成

题意:给一个图,求1到n的最短路。

思路:直接写dijkstra,数据量小,其实不用堆优化也行。

用优先队列保存结点,按照距离从小到大排序,可以快速的求出离1距离最小的点。

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<climits>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
const int inf = INT_MAX;
struct  node
{
	int to, w;
	bool operator <(const node& x)const
	{
		return w > x.w;
	}
};
vector<node> vec[1005];//vector存图
int edgenum[1005], dis[1005], n;//edgenum代表这个顶点的度
bool vis[1005];
void addedge(int u, int v, int val)
{
	edgenum[u]++;
	edgenum[v]++;
	node* t = new node;
	t->to = v;
	t->w = val;
	vec[u].push_back(*t);
	t->to = u;
	vec[v].push_back(*t);
}//双向边
void dijkstra()
{
	int i, j;
	for (i = 1;i <= n;i++)
	{
		dis[i] = inf;
	}
	d
下面是使用优化Dijkstra 算法来求解最短路径的示例代码,其中使用了 vector 来表示图的邻接表: ```cpp #include <iostream> #include <vector> #include <queue> #include <limits> using namespace std; typedef pair<int, int> pii; const int INF = numeric_limits<int>::max(); vector<int> dijkstra(const vector<vector<pii>>& graph, int source) { int n = graph.size(); vector<int> dist(n, INF); dist[source] = 0; priority_queue<pii, vector<pii>, greater<pii>> pq; pq.push({0, source}); while (!pq.empty()) { int u = pq.top().second; int d = pq.top().first; pq.pop(); if (d > dist[u]) { continue; // 已经找到了更短的路径 } for (const auto& edge : graph[u]) { int v = edge.first; int w = edge.second; if (dist[u] + w < dist[v]) { dist[v] = dist[u] + w; pq.push({dist[v], v}); } } } return dist; } int main() { int n = 5; // 图的顶点数 int m = 7; // 图的边数 vector<vector<pii>> graph(n); // 构建图的邻接表 graph[0].push_back({1, 2}); graph[0].push_back({2, 4}); graph[1].push_back({2, 1}); graph[1].push_back({3, 7}); graph[2].push_back({3, 3}); graph[2].push_back({4, 5}); graph[3].push_back({4, 2}); graph[4].push_back({3, 1}); int source = 0; vector<int> dist = dijkstra(graph, source); cout << "Shortest distances from node " << source << ":" << endl; for (int i = 0; i < n; ++i) { cout << "Node " << i << ": " << dist[i] << endl; } return 0; } ``` 上述代码中,我们使用优化Dijkstra 算法来找到从源节点到其他节点的最短距离。图的邻接关系使用 vector<vector<pii>> 来表示,其中 pii 表示边的目标节点和权重。你可以根据需要修改图的顶点数、边数和邻接表来适应不同的场景。输出结果将会显示源节点到其他节点的最短距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值