pytorch初步学习(一)
最近在学习神经网络以及深度学习,在老师建议下是从pytorch开始入手,但是在直接看到网络也是比较懵的状态,所以购买了一本书籍开始学习一些基础的概念以及参数意义,最开始就先从最简单的书籍上讲解的顺序开始记录下自己学习的过程及理解。
当然首先需要安装环境及配置,安装cuda(前提最好时英伟达显卡),首先在cmd中安装pytorch,创建虚拟环境以及调试确认是否成功,安装anaconda,以及pycharm上的调用环境以及使用,此处默认已经配置完成。欲了解可参考csdn其他大佬的配置过程,或者问我这个小萌新(我自己的安装过程)。
1.数据准备
pytorch提供两种类型的数据抽象,称为张量和变量。张量类似于python数组,可改变大小,数据抽象使得其在GPU和CPU上可以实现简易切换,简单理解就是如此操作时,机器学习算法可以理解不同格式的数据,也就是将一些想要处理的数据变为算法可以认识的语言。以下列出一些常见的张量,以及一些自己参考书籍的一些理解:
- 1:标量(0维张量)
只包含一个元素的张量称为标量,类型通常为FloatTensor或者LongTensor。在学习的时候还没有特别的0维张量,所以只是以包含一个元素的一维张量作为表示 :
import torch
x = torch.rand(10)
print(x.size())
结果为如下:
torc