【轻量化网络】ShuffleNet 和 MobileNet

本文详细介绍了轻量化网络ShuffleNet和MobileNet的设计思想与实现方式,包括Group convolution、MobileNet v1的Depthwise+Pointwise卷积、ShuffleNet v1的Channel Shuffle操作以及MobileNet v2的Inverted residual block,旨在实现低计算量和存储需求的高效模型。
摘要由CSDN通过智能技术生成

ShuffleNet、MobileNet

算法层面有效的压缩存储和计算量。

一、Group convolution

在这里插入图片描述
假设有输入feature map,大小为H x W x C,用k个h x w大小的卷积核去进行卷积运算,输出H’ x W’ x k。(不关心H’ 和 W’)
而Group convolution的实质就是将convolution分为g个独立的组,分别进行计算。
在这里插入图片描述
这里g=2。

  • 把输入的特征图分为g组,每组H x W x (C/g)
  • 把卷积核也分为g组,每组h x w x (k/g)
  • 按顺序,每组特征图和卷积核,分别做卷积,输出g组特征

二、MobileNet v1

Mobilenet v1希望能在移动设备或者嵌入式设备(所以叫Mobile)中,最大化使用模型。
Mobilenet v1核心是把卷积拆分为Depthwise+Pointwise两部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值