ShuffleNet、MobileNet
在算法层面有效的压缩存储和计算量。
一、Group convolution
假设有输入feature map,大小为H x W x C,用k个h x w大小的卷积核去进行卷积运算,输出H’ x W’ x k。(不关心H’ 和 W’)
而Group convolution的实质就是将convolution分为g个独立的组,分别进行计算。
这里g=2。
- 把输入的特征图分为g组,每组H x W x (C/g)
- 把卷积核也分为g组,每组h x w x (k/g)
- 按顺序,每组特征图和卷积核,分别做卷积,输出g组特征
二、MobileNet v1
Mobilenet v1希望能在移动设备或者嵌入式设备(所以叫Mobile)中,最大化使用模型。
Mobilenet v1核心是把卷积拆分为Depthwise+Pointwise两部分。