磊,,北
码龄6年
关注
提问 私信
  • 博客:30,145
    30,145
    总访问量
  • 30
    原创
  • 1,811,593
    排名
  • 3
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:中国
  • 加入CSDN时间: 2018-10-30
博客简介:

qq_43561314的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得1次评论
  • 获得78次收藏
  • 代码片获得200次分享
创作历程
  • 1篇
    2022年
  • 1篇
    2021年
  • 1篇
    2020年
  • 28篇
    2019年
成就勋章
TA的专栏
  • 爬虫
    4篇
  • 自然语言处理
    5篇
  • 深度学习
    18篇
  • 人工智能
    4篇
  • Sympy
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

高效准确处理scipy.misc 中imresize、imread导入错误问题

对于处理Caltech_Pedestrian数据集,在不改变python和scipy的前提下,成功使用scipy.misc中的imresize、imread函数,使得数据集处理结果一致。
原创
发布博客 2022.08.07 ·
3645 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

pytorch 在原有模型上添加新层

"""第一种替换方法"""qian_line = net.lineclass Add_Drop(nn.Module): def __init__(self, qian_line): super(Add_Drop, self).__init__() self.add_drop = nn.Sequential( nn.Dropout(0.3), qian_line ) def forward.
原创
发布博客 2021.07.20 ·
5331 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

无约束优化迭代法并以多元回归损失函数为例

一、从泰勒展开式了解极小值点:首先在处泰勒展开式:标量:向量:对任意一个函数(标量):1.严格局部极小点值:2.等同于满足且向量:1.满足局部极小值:且(为正定矩阵),当为不定矩阵时,是一个鞍点。二、无约束优化迭代法(一)无约束优化迭代法基本结构:(1)设置参数初始点,设置convergencetolerance (当大于时停止迭代),记...
原创
发布博客 2020.02.11 ·
586 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Gensim部分基本函数导图

原创
发布博客 2019.09.03 ·
266 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PyTorch之Torchvision函数导图

原创
发布博客 2019.09.03 ·
162 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PyTorch之pytorch.optim函数导图

原创
发布博客 2019.09.03 ·
300 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

PyTorch之pytorch.nn基本函数导图

原创
发布博客 2019.09.03 ·
160 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pytorch之torch基本函数导图

原创
发布博客 2019.09.03 ·
259 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习网络优化

避免过拟合一、正则化1、(m,样本数),W为第n层的权重的大小(前一层的输出*当前层的神经元数),损失函数加上正则化项(神经网络所有权重参数)然后对w计算偏导,即可更新权重2、droupout即随机移除百分比(如0.2)的神经元,使其暂时不参与运算,即当次不更新其权重,使总的网络更“平均”,不依特定的几个神经元或权重。并且在下一层计算时,为保证期望不变结果需要除以0...
原创
发布博客 2019.08.28 ·
472 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习 前向传播与后向传播实例推导

举例:假设一个有两个隐藏层,每个隐藏层有一个神经元且接着一个sigmoid激活函数的神经网络例子,输入为x0,输出为pre,真实值为rel,经过第一个线性层为x11,第一个激活函数为x12;第二个线性层为x21,第二个激活函数为x22一、1.首先需要知道输出:pre= sig(w2*sig(w1*x0+b1)+b2) = sig(w2*x12+b2) , x12 = s...
原创
发布博客 2019.08.18 ·
891 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

深度学习 激活函数理解

一、首先需要准备一个反向传播的例子。举例:假设一个有两个隐藏层,每个隐藏层有一个神经元且接着一个sigmoid激活函数的神经网络例子,输入为x0,输出为pre,真实值为rel,经过第一个线性层为x11,第一个激活函数为x12;第二个线性层为x21,第二个激活函数为x221.首先需要知道输出:pre= sig(w2*sig(w1*x0+b1)+b2) = sig(w2*x12+b2...
原创
发布博客 2019.08.17 ·
1554 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pytorch requires_grad与优化器优化

import torch.nn as nnimport torchimport torch.optim as optimm = torch.randn((2,3,6))class Abc(nn.Module): def __init__(self): super().__init__() self.relu = nn.Linear(18,1)...
原创
发布博客 2019.08.13 ·
519 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch 加载并批处理数据集

一、加载数据集加载数据集需要继承torch.utils.data 的 Dataset类,并实现 __len__和__getitem__方法。其中__len__返回数据集总数,__getitem__返回指定的数的矩阵和标签。二、数据集批处理需要torch.utils.data 的DataLoader类,有batch_size(批处理尺寸),num_workers(多进程),Samp...
原创
发布博客 2019.08.06 ·
603 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

JIEBA分词函数导图

原创
发布博客 2019.07.30 ·
294 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PYTHON MySql数据库的插入、更新与查询

一、动态插入1.传入字典2.构造sql语句3.插入import pymysqldb = pymysql.connect(host='localhost',user='root',password='',port=3306,db='scrapy_db')cursor = db. cursor() #数据库连接data = { 'num':'22', 's...
原创
发布博客 2019.07.28 ·
834 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Python Sympy基础函数

原创
发布博客 2019.07.22 ·
880 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

Hanlp和Standfordcorenlp下载及配置

一、Hanlp配置1.在https://github.com/hankcs/HanLP/blob/master/README.md下载data.zip和hanlp-release.zip并解压。2.在hanlp.properties中更改路径,路径名为当前文件所在路径3.下载java64位并完成配置。4.在python中的调用。(1)首先安装jpype能调用JAVA接...
原创
发布博客 2019.06.07 ·
985 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Tensorflow模型保存与调用

一、模型保存saver = tf.train.Saver()与saver.save(sess,'net/my_net.ckpt') 函数import tensorflow as tfsaver = tf.train.Saver()with tf.Session() as sess: sess.run(init) for epoch in range(11): ...
原创
发布博客 2019.06.03 ·
220 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

TensorBoard可视化

import tensorflow as tf#参数概要def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean)#平均值 with tf.name_s...
原创
发布博客 2019.06.02 ·
143 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tensorflow卷积神经网络之MNIST分类

卷积神经网络过程:卷积层池化层全连接层python步骤:1.设置占位符2.可设置多层卷积层。每一层需要权值,n个卷积核、n个偏置值、激活函数、池化层3.可设置多层全连接层。每一层需要权值、偏置值、激活函数4.设置代价函数及优化器,计算结果python代码:import tensorflow as tffrom tensorflow.examples.tu...
原创
发布博客 2019.06.02 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多