1、一开始题意看得我有点蒙。
就是说有K种类型题,一共有N个题,对于一个题他可能属于多种类型,比如一个题可能包含快速幂、二分、最小生成树等算法。
现在要求每种类型选出a_i个题,然后给出每个题所包含的类型。让你构造方案。
同一个题只能被选中一次,即这个题放在快速幂类型内,就不能放在最小生成树中。
2、一个比较明显的二分图多重匹配问题,我们建立0为源点,n+k+1为汇点。
将K种题型放在二分图左部,源点向K个点连边,流量为所要求的a_i。
将N个题放在二分图右部,将N个点向汇点n+k+1连边,容量为1,因为每个点只能被包含在一个题型中。
对于二分图两部,将题和它所包含的题型连边,容量为1。
3、对于是否有方案,我们只要看最大流是不是等于所有a_i之和即可。
如果有解决方案,我们对于每种题型,遍历所连接的点,如果连的点是右部的点,并且流量为0,那么说明右部的这个题被选中了。
#include<bits/stdc++.h>
using namespace std;
const int N=1050,M=1e5;
struct E{
int to,next,v;
}e[M];
int h[N],tot;
int n,m,k;
int ans;
int deep[N],cur[N];
void add(int a,int b,int v){
e[tot]={b,h[a],v},h[a]=tot++;
e[tot]={a,h[b],0},h[b]=tot++;
}
int bfs(int s,int t){
memset(deep,0,sizeof deep);
queue<int> que;
deep[s]=1;
que.push(s);
while(!que.empty()){
int x=que.front();
que.pop();
for(int i=h[x];~i;i=e[i].next){
int to=e[i].to,v=e[i].v;
if(v && !deep[to]){
deep[to]=deep[x]+1;
que.push(to);
}
}
}
return deep[t];
}
int dfs(int s,int t,int flow){
if(s==t) return flow;
int sum=0;
for(int &i=cur[s];~i;i=e[i].next){
int to=e[i].to,v=e[i].v;
if(v && deep[to]==deep[s]+1){
int Next=dfs(to,t,min(flow,v));
e[i].v-=Next,e[i^1].v+=Next;
flow-=Next,sum+=Next;
}
}
if(!sum) deep[s]=-2;
return sum;
}
void Dinic(int s,int t){
int INF=1e9;
ans=0;
while(bfs(s,t)) {
for(int i=s;i<=t;i++) cur[i]=h[i];
ans+=dfs(s,t,INF);
}
}
int main(){
memset(h,-1,sizeof h);
tot=0;
int sum=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int x;scanf("%d",&x);
sum+=x;
add(0,i,x);
}
for(int i=1;i<=m;i++){
int cnt;scanf("%d",&cnt);
while(cnt--){
int x;scanf("%d",&x);
add(x,n+i,1);
}
add(n+i,n+m+1,1);
}
Dinic(0,n+m+1);
if(ans!=sum) puts("No Solution!");
else{
for(int i=1;i<=n;i++){
printf("%d: ",i);
for(int j=h[i];~j;j=e[j].next){
if(!e[j].v && e[j].to>n) printf("%d ",e[j].to-n);
}
puts("");
}
}
return 0;
}