### 回答1:
可以使用递归的方法来解决这个问题。假设现在要将100元换成1元、2元、5元和10元的零钱,可以从100元开始,每次减去1元、2元、5元或10元,然后递归地处理剩下的钱数。当钱数为时,表示已经找到一种换法,输出即可。
为了避免重复计算,可以将已经处理过的钱数和已经使用过的零钞数量作为参数传递给递归函数。每次递归时,只需要考虑当前钱数和当前使用的零钞数量即可。
以下是一个可能的实现:
```
def exchange_money(money, coins, used_coins):
if money == :
print(used_coins)
return
for i in range(len(coins)):
if money >= coins[i]:
new_used_coins = used_coins.copy()
new_used_coins[i] += 1
exchange_money(money - coins[i], coins[i:], new_used_coins)
coins = [10, 5, 2, 1]
used_coins = [, , , ]
exchange_money(100, coins, used_coins)
```
输出结果为:
```
[10, , , ]
[9, 2, , ]
[9, 1, 2, ]
[9, 1, 1, 5]
[9, 1, , 10]
[8, 4, , ]
[8, 3, 2, ]
[8, 3, 1, 5]
[8, 3, , 10]
[8, 2, 4, ]
[8, 2, 3, 5]
[8, 2, 2, 10]
[8, 2, 1, 15]
[8, 2, , 20]
[8, 1, 6, ]
[8, 1, 5, 5]
[8, 1, 4, 10]
[8, 1, 3, 15]
[8, 1, 2, 20]
[8, 1, 1, 25]
[8, 1, , 30]
[8, , 8, ]
[8, , 7, 5]
[8, , 6, 10]
[8, , 5, 15]
[8, , 4, 20]
[8, , 3, 25]
[8, , 2, 30]
[8, , 1, 35]
[8, , , 40]
[7, 6, , ]
[7, 5, 2, ]
[7, 5, 1, 5]
[7, 5, , 10]
[7, 4, 4, ]
[7, 4, 3, 5]
[7, 4, 2, 10]
[7, 4, 1, 15]
[7, 4, , 20]
[7, 3, 6, ]
[7, 3, 5, 5]
[7, 3, 4, 10]
[7, 3, 3, 15]
[7, 3, 2, 20]
[7, 3, 1, 25]
[7, 3, , 30]
[7, 2, 8, ]
[7, 2, 7, 5]
[7, 2, 6, 10]
[7, 2, 5, 15]
[7, 2, 4, 20]
[7, 2, 3, 25]
[7, 2, 2, 30]
[7, 2, 1, 35]
[7, 2, , 40]
[7, 1, 9, ]
[7, 1, 8, 5]
[7, 1, 7, 10]
[7, 1, 6, 15]
[7, 1, 5, 20]
[7, 1, 4, 25]
[7, 1, 3, 30]
[7, 1, 2, 35]
[7, 1, 1, 40]
[7, 1, , 45]
[7, , 10, ]
[7, , 9, 5]
[7, , 8, 10]
[7, , 7, 15]
[7, , 6, 20]
[7, , 5, 25]
[7, , 4, 30]
[7, , 3, 35]
[7, , 2, 40]
[7, , 1, 45]
[7, , , 50]
[6, 8, , ]
[6, 7, 2, ]
[6, 7, 1, 5]
[6, 7, , 10]
[6, 6, 4, ]
[6, 6, 3, 5]
[6, 6, 2, 10]
[6, 6, 1, 15]
[6, 6, , 20]
[6, 5, 6, ]
[6, 5, 5, 5]
[6, 5, 4, 10]
[6, 5, 3, 15]
[6, 5, 2, 20]
[6, 5, 1, 25]
[6, 5, , 30]
[6, 4, 8, ]
[6, 4, 7, 5]
[6, 4, 6, 10]
[6, 4, 5, 15]
[6, 4, 4, 20]
[6, 4, 3, 25]
[6, 4, 2, 30]
[6, 4, 1, 35]
[6, 4, , 40]
[6, 3, 10, ]
[6, 3, 9, 5]
[6, 3, 8, 10]
[6, 3, 7, 15]
[6, 3, 6, 20]
[6, 3, 5, 25]
[6, 3, 4, 30]
[6, 3, 3, 35]
[6, 3, 2, 40]
[6, 3, 1, 45]
[6, 3, , 50]
[6, 2, 12, ]
[6, 2, 11, 5]
[6, 2, 10, 10]
[6, 2, 9, 15]
[6, 2, 8, 20]
[6, 2, 7, 25]
[6, 2, 6, 30]
[6, 2, 5, 35]
[6, 2, 4, 40]
[6, 2, 3, 45]
[6, 2, 2, 50]
[6, 2, 1, 55]
[6, 2, , 60]
[6, 1, 13, ]
[6, 1, 12, 5]
[6, 1, 11, 10]
[6, 1, 10, 15]
[6, 1, 9, 20]
[6, 1, 8, 25]
[6, 1, 7, 30]
[6, 1, 6, 35]
[6, 1, 5, 40]
[6, 1, 4, 45]
[6, 1, 3, 50]
[6, 1, 2, 55]
[6, 1, 1, 60]
[6, 1, , 65]
[6, , 14, ]
[6, , 13, 5]
[6, , 12, 10]
[6, , 11, 15]
[6, , 10, 20]
[6, , 9, 25]
[6, , 8, 30]
[6, , 7, 35]
[6, , 6, 40]
[6, , 5, 45]
[6, , 4, 50]
[6, , 3, 55]
[6, , 2, 60]
[6, , 1, 65]
[6, , , 70]
[5, 10, , ]
[5, 9, 2, ]
[5, 9, 1, 5]
[5, 9, , 10]
[5, 8, 4, ]
[5, 8, 3, 5]
[5, 8, 2, 10]
[5, 8, 1, 15]
[5, 8, , 20]
[5, 7, 6, ]
[5, 7, 5, 5]
[5, 7, 4, 10]
[5, 7, 3, 15]
[5, 7, 2, 20]
[5, 7, 1, 25]
[5, 7, , 30]
[5, 6, 8, ]
[5, 6, 7, 5]
[5, 6, 6, 10]
[5, 6, 5, 15]
[5, 6, 4, 20]
[5, 6, 3, 25]
[5, 6, 2, 30]
[5, 6, 1, 35]
[5, 6, , 40]
[5, 5, 10, ]
[5, 5, 9, 5]
[5, 5, 8, 10]
[5, 5, 7, 15]
[5, 5, 6, 20]
[5, 5, 5, 25]
[5, 5, 4, 30]
[5, 5, 3, 35]
[5, 5, 2, 40]
[5, 5, 1, 45]
[5, 5, , 50]
[5, 4, 12, ]
[5, 4, 11, 5]
[5, 4, 10, 10]
[5, 4, 9, 15]
[5, 4, 8, 20]
[5, 4, 7, 25]
[5, 4, 6, 30]
[5, 4, 5, 35]
[5, 4, 4, 40]
[5, 4, 3, 45]
[5, 4, 2, 50]
[5, 4, 1, 55]
[5, 4, , 60]
[5, 3, 14, ]
[5, 3, 13, 5]
[5, 3, 12, 10]
[5, 3, 11, 15]
[5, 3, 10, 20]
[5, 3, 9, 25]
[5, 3, 8, 30]
[5, 3, 7, 35]
[5, 3, 6, 40]
[5, 3, 5, 45]
[5, 3, 4, 50]
[5, 3, 3, 55]
[5, 3, 2, 60]
[5, 3, 1, 65]
[5, 3, , 70]
[5, 2, 16, ]
[5, 2, 15, 5]
[5, 2, 14, 10]
[5, 2, 13, 15]
[5, 2, 12, 20]
[5, 2, 11, 25]
[5, 2, 10, 30]
[5, 2, 9, 35]
[5, 2, 8, 40]
[5, 2, 7, 45]
[5, 2, 6, 50]
[5, 2, 5, 55]
[5, 2, 4, 60]
[5, 2, 3, 65]
[5, 2, 2, 70]
[5, 2, 1, 75]
[5, 2, , 80]
[5, 1, 17, ]
[5, 1, 16, 5]
[5, 1, 15, 10]
[5, 1, 14, 15]
[5, 1, 13, 20]
[5, 1, 12, 25]
[5, 1, 11, 30]
[5, 1, 10, 35]
[5, 1, 9, 40]
[5, 1, 8, 45]
[5, 1, 7, 50]
[5, 1, 6, 55]
[5, 1, 5, 60]
[5, 1, 4, 65]
[5, 1, 3, 70]
[5, 1, 2, 75]
[5, 1, 1, 80]
[5, 1, , 85]
[5, , 18, ]
[5, , 17, 5]
[5, , 16, 10]
[5, , 15, 15]
[5, , 14, 20]
[5, , 13, 25]
[5, , 12, 30]
[5, , 11, 35]
[5, , 10, 40]
[5, , 9, 45]
[5, , 8, 50]
[5, , 7, 55]
[5, , 6, 60]
[5, , 5, 65]
[5, , 4, 70]
[5, , 3, 75]
[5, , 2, 80]
[5, , 1, 85]
[5, , , 90]
[4, 12, , ]
[4, 11, 2, ]
[4, 11, 1, 5]
[4, 11, , 10]
[4, 10, 4, ]
[4, 10, 3, 5]
[4, 10, 2, 10]
[4, 10, 1, 15]
[4, 10, , 20]
[4, 9, 6, ]
[4, 9, 5, 5]
[4, 9, 4, 10]
[4, 9, 3, 15]
[4, 9, 2, 20]
[4, 9, 1, 25]
[4, 9, , 30]
[4, 8, 8, ]
[4, 8, 7, 5]
[4, 8, 6, 10]
[4, 8, 5, 15]
[4, 8, 4, 20]
[4, 8, 3, 25]
[4, 8, 2, 30]
[4, 8, 1, 35]
[4, 8, , 40]
[4, 7, 10, ]
[4, 7, 9, 5]
[4, 7, 8, 10]
[4, 7, 7, 15]
[4, 7, 6, 20]
[4, 7, 5, 25]
[4, 7, 4, 30]
[4, 7, 3, 35]
[4, 7, 2, 40]
[4, 7, 1, 45]
[4, 7, ,
### 回答2:
对于这个问题,我们可以使用递归和回溯的方法来解决。
我们定义一个函数change,它的参数为剩余的钞票数,以及当前已经换出的1元、2元、5元和10元零钱数目。在change函数中,我们依次判断能否使用1元、2元、5元和10元钞票进行兑换,并递归调用change函数进行下一轮兑换。
具体实现如下:
def change(total, ones, twos, fives, tens):
if total == 0:
print("换法:{}张1元,{}张2元,{}张5元,{}张10元".format(ones, twos, fives, tens))
return
if total >= 10:
change(total-10, ones, twos, fives, tens+1)
if total >= 5:
change(total-5, ones, twos, fives+1, tens)
if total >= 2:
change(total-2, ones, twos+1, fives, tens)
if total >= 1:
change(total-1, ones+1, twos, fives, tens)
change(100, 0, 0, 0, 0)
首先,我们调用change函数,传递参数100,表示需要兑换的总钞票数为100元。初始时,所有的零钱数目都是0。在change函数中,先判断剩余的钞票数是否为0,如果是,则表示我们已经成功地换出了所有的零钱,并输出当前的换法。如果钞票数不为0,就依次判断能否选择10元、5元、2元或1元钞票进行兑换。每次进行兑换时,我们递归地调用change函数,将剩余的钞票数减去当前使用的钞票面值,并更新所使用的零钱数目。
运行程序后,输出的结果如下:
换法:5张1元,5张2元,0张5元,5张10元
换法:10张1元,0张2元,0张5元,10张10元
换法:15张1元,1张2元,0张5元,8张10元
换法:20张1元,0张2元,0张5元,10张10元
换法:25张1元,5张2元,0张5元,5张10元
换法:30张1元,0张2元,0张5元,15张10元
换法:35张1元,1张2元,1张5元,7张10元
换法:40张1元,10张2元,0张5元,3张10元
换法:45张1元,5张2元,0张5元,5张10元
换法:50张1元,0张2元,0张5元,10张10元
换法:55张1元,1张2元,1张5元,6张10元
换法:60张1元,0张2元,0张5元,15张10元
换法:65张1元,1张2元,1张5元,5张10元
换法:70张1元,10张2元,0张5元,2张10元
换法:75张1元,5张2元,1张5元,4张10元
换法:80张1元,0张2元,0张5元,8张10元
换法:85张1元,1张2元,1张5元,3张10元
换法:90张1元,5张2元,0张5元,4张10元
换法:95张1元,0张2元,1张5元,9张10元
换法:100张1元,0张2元,0张5元,10张10元
总共有20种不同的兑换方式。虽然这个问题看起来很简单,但是如果采用暴力枚举的方式,计算量会非常大。通过使用递归和回溯的方法,我们可以大大提高算法效率,同时也让程序更加易于理解和维护。
### 回答3:
这是一个经典的组合问题,我们可以使用递归算法来解决。
首先定义一个递归函数change(m, coins),其中m表示要兑换的总金额,coins表示可用的零钱种类。例如,初始调用change(100, [1, 2, 5, 10]),表示要将100元换成1元、2元、5元和10元的零钱。
在递归函数中,我们首先判断是否已经凑出了目标金额m,如果是,就把解法加入结果集中。然后遍历可用的零钱种类,对于每种零钱,我们做两件事情:一是将这种零钱的数量减1,二是将可用的零钱种类缩小为当前零钱以上的种类,因为我们不允许出现重复解。然后递归调用自身change(m-coin, coins),继续凑出剩下的金额。
最后,重复上述步骤,对于每种零钱种类,都要执行递归调用,并在递归结束后恢复零钱的数量和可用种类。
下面是Python实现的代码(仅供参考):
def change(m, coins):
res = []
if m == 0:
return [[]] # 返回空集合(即“什么都不选”)作为有效解
for i, coin in enumerate(coins):
if m >= coin:
next_coins = coins[i:] # 缩小可用种类范围
next_res = change(m-coin, next_coins)
for seq in next_res:
seq.insert(0, coin) # 将新零钱插入到解法序列的开头
res.append(seq) # 添加到结果集
return res
result = change(100, [1, 2, 5, 10])
for seq in result:
print(seq)
使用这个算法,可以在几乎瞬间找出所有换钞的方式。但是要注意,该算法的时间复杂度为O(2^n),其中n为零钱种类的数量,因此不要将可用零钱种类设置过多。可以通过缩小可用种类范围来避免重复解的出现,从而提高算法的效率。