- 枚举法:我们通过一个一个枚举长度之和来求解,例如序列{1,-2,1}枚举的情况有:
(1)(1,-2)(1,-2,1)(-2)(-2,1)(1)通过三个循环来枚举这些情况
int sum=0,a[10]={1,-2,3};
for(int i=1;i<=n;i++)//枚举每一个数
for(int j=i;j<=n;j++)
{
sum=0;
for(int k=i;k<=j;k++)
sum+=a[k];
ans=max(ans,sum);//更新最大值
}
时间复杂度:O(n^3)
2:递推:(对1的优化)
定义s[i]为前i项和
int s[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];
}
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
ans=max(ans,s[j]-s[i-1]);
3:分治法
将原问题分解成子问题,我们将序列分成[1,m],[m+1,r],m=(l+r)/2,情况有3种
1:最大子序列和在左区间
2:最大子序列和在右区间
3:最大子序列在中间(1=<i<=m<=j<=n)
思路:对于1,2我们之间求和就好了,而3就是1+2(递归来解)
#include<cstdio>
using namespace std;
int a[200005],n;
const int minx=-999999999;
int max(int a,int b)
{
return a>b?a:b;
}
int fun(int l,int r)
{
if(l==r)return a[l];
int m=(l+r)/2;
int ansl,ansr,sum=0;
ansl=ansr=minx;
for(int i=m;i>=1;i--)
{
sum+=a[i];
ansl=max(ansl,sum);
}
sum=0;
for(int j=m+1;j<=r;j++)
{
sum+=a[j];
ansr=max(ansr,sum);
}
return max(max(fun(l,m),fun(m+1,r)),ansl+ansr);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
printf("%d\n",fun(1,n));
return 0;
}
来源:P1115 最大子段和(洛谷)另外别用分治去做这道题,会tle的建议用贪心
4:贪心法
我们用sum积累和,当sum<=0时,我们就不需要前面的数了(后面的数肯定希望前面的数是正数,所以到后面就不选前面的负数了)直接一直积累过去
#include<cstdio>
using namespace std;
int main()
{
int ans,x,sum,n;
scanf("%d%d",&n,&ans);
sum=ans;
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
sum=sum>0?sum:0;//出现负数舍弃
sum+=x;
ans=ans>sum?ans:sum;//更新最大值
}
printf("%d",ans);
return 0;
}
这个方法能够AC洛谷的那道题(小声bb)
另外我们在求解时也可能会遇到有环的存在,具体做法就是数组开成2*n
想做的可以试试:传送门(2019蓝桥杯模拟赛蒜厂年会)(这道题用贪心只能过8/10个样例)
后序更新(题解)=^=!
更新: