求最大连续和的解法(4种)

  1. 枚举法:我们通过一个一个枚举长度之和来求解,例如序列{1,-2,1}枚举的情况有:

(1)(1,-2)(1,-2,1)(-2)(-2,1)(1)通过三个循环来枚举这些情况

 int sum=0,a[10]={1,-2,3};
 for(int i=1;i<=n;i++)//枚举每一个数 
 for(int j=i;j<=n;j++) 
 {
 	sum=0;
 	for(int k=i;k<=j;k++)
 	sum+=a[k];
 	ans=max(ans,sum);//更新最大值 
 }

时间复杂度:O(n^3)

2:递推:(对1的优化)

定义s[i]为前i项和

int s[0]=0;
for(int i=1;i<=n;i++)
{
    scanf("%d",&a[i]);
    s[i]=s[i-1]+a[i];
 }
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
ans=max(ans,s[j]-s[i-1]);

3:分治法

将原问题分解成子问题,我们将序列分成[1,m],[m+1,r],m=(l+r)/2,情况有3种

1:最大子序列和在左区间

2:最大子序列和在右区间

3:最大子序列在中间(1=<i<=m<=j<=n)

思路:对于1,2我们之间求和就好了,而3就是1+2(递归来解)

 

#include<cstdio>
using namespace std;
int a[200005],n;
const int minx=-999999999;
int max(int a,int b)
{
	return a>b?a:b;
}
int fun(int l,int r)
{
	if(l==r)return a[l];
	int m=(l+r)/2;
	int ansl,ansr,sum=0;
	ansl=ansr=minx;
	for(int i=m;i>=1;i--)
	{
		sum+=a[i];
		ansl=max(ansl,sum);
	}
	sum=0;
	for(int j=m+1;j<=r;j++)
	{
		sum+=a[j];
		ansr=max(ansr,sum);
	}
	return max(max(fun(l,m),fun(m+1,r)),ansl+ansr);
	
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	scanf("%d",&a[i]);
	printf("%d\n",fun(1,n));
	return 0;
 } 

来源:P1115 最大子段和(洛谷)另外别用分治去做这道题,会tle的建议用贪心

4:贪心法

我们用sum积累和,当sum<=0时,我们就不需要前面的数了(后面的数肯定希望前面的数是正数,所以到后面就不选前面的负数了)直接一直积累过去

#include<cstdio>
using namespace std;
int main()
{
	int ans,x,sum,n;
	scanf("%d%d",&n,&ans);
	sum=ans;
	for(int i=2;i<=n;i++)
	{
		scanf("%d",&x);
		sum=sum>0?sum:0;//出现负数舍弃
		sum+=x;
		ans=ans>sum?ans:sum;//更新最大值
	}
	printf("%d",ans);
	return 0;
 } 

这个方法能够AC洛谷的那道题(小声bb)

另外我们在求解时也可能会遇到有环的存在,具体做法就是数组开成2*n

想做的可以试试:传送门(2019蓝桥杯模拟赛蒜厂年会)(这道题用贪心只能过8/10个样例)

后序更新(题解)=^=!

更新:

蒜厂年会题解

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值