神经网络反向传播原理(作用,为什么要反向传播)
参考这里给出关键的一句话: 反向传播就是为了实现最优化,省去了重复的求导步骤背景在机器学习中,很多算法最后都会转化为求一个目标损失函数(loss function)的最小值。这个损失函数往往很复杂,难以求出最值的解析表达式。而梯度下降法正是为了解决这类问题。直观地说一下这个方法的思想:我们把求解损失函数最小值的过程看做“站在山坡某处去寻找山坡的最低点”。我们并不知道最低点的确切位置,“梯度下降”的策略是每次向“下坡路”的方向走一小步,经过长时间的走“下坡路”最后的停留位置也大概率在最低点附近。这个“
原创
2021-05-14 16:37:44 ·
15000 阅读 ·
8 评论