汉若塔(递归实现)
背景说明
河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市; 1883年法国数学家Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag) 所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘( Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。
解法思路
(一)我们在理解递归算法时候要注意一下几点
- 不要试图去跟踪递归遍历的过程和结果
- 我们应该用数据归纳法去归纳相同问题的递归公式
- 找出递归公式
(二)假设 n为盘子数量 有A B C三个柱子,对于汉若塔问题,我们将其划分为三个大步骤:
(1).将A柱上的盘子(即n-1个盘子)除了底部最大的盘子之外的都移动到中间柱B
(2).将A柱的盘子移动到C
(3).将B柱的盘子移动到C
(三)下面我们将通过n=1,2,3,4时的各步骤试图总结出递推关系。
设函数 hanio(n,‘A’,‘B’,‘C’),表示将A柱的盘子借助B移动到C;
n=1时
A-->C
//表示将盘从A直接移动到C
//移动次数为1
n=2时
A-->B
A-->C
B-->C
//此时函数表示形式为 hanio(2,‘A’,‘B’,‘C’)
//移动次数为3
n=3时,根据步骤,
(1)我们需要将2个盘子移动到B柱
A-->C
A-->B
C-->B
//(1)步骤的函数表示形式为 hanio(2,‘A’,‘C’,‘B’)
(2)将A柱的盘子移动到C柱
A-->C
(3)将B柱的盘子移动到C柱
B-->A
B-->C
A-->C
//(3)步骤的函数表示形式为 hanio(2,‘B’,‘A’,‘C’)
至此,n=3时的函数表示形式如下:
hanio(3,‘A’,‘B’,‘C’)
{
hanio(2,‘A’,‘C’,‘B’);
A-->C;
hanio(2,‘B’,‘A’,‘C’);
//移动次数为7
}
同理,当n=4时,根据步骤,
(1)我们需要将3个盘子移动到B柱,可以根据n=3时的结果直接调用:
hanio(3,‘A’,‘C’,‘B’)
//(1)步骤的移动次数为7
(2)将A柱的盘子移动到C柱
A-->C
(3)将B柱的盘子移动到C柱,仍然可以根据n=3时的结果直接调用:
hanio(3,‘B’,‘A’,‘C’)
//(1)步骤的移动次数为7
至此,n=4时的函数表示形式如下:
hanio(4,‘A’,‘B’,‘C’)
{
hanio(3,‘A’,‘C’,‘B’);
A-->C;
hanio(3,‘B’,‘A’,‘C’);
//移动次数为7+1+7=15
}
综上,我们总结出,当n>=2时,n个盘子的递归关系如下:
hanio(n,‘A’,‘B’,‘C’)
{
hanio(n-1,‘A’,‘C’,‘B’);
A-->C;
hanio(n-1,‘B’,‘A’,‘C’);
//移动次数为2^n-1
(四)代码实现
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <math.h>
void hanio(int n, char A, char B, char C)
{
if (n == 1)
{
printf("%c-->%c\n",A,C);
}
else
{
hanio(n - 1,A,C,B);
printf("%c-->%c\n", A, C);
hanio(n - 1, B, A, C);
}
}
int main()
{
int n = 0;
printf("请输入盘子的数量\n");
scanf("%d",&n);
hanio(n, 'A','B','C');
long long int num = pow(2, n)-1;
printf("共需要搬移%lld次\n",num);
return 0;
}
根据背景故事分析,当n=64次时,需要搬移的次数为 2 n − 1 2^n-1 2n−1,计算可知该数为18446744073709551615,若每日仅搬一个盘子,约为2亿银河年【银河年,也称为宇宙年,是太阳系在轨道上绕着银河系中心公转一周的时间,估计在2.25亿至2.5亿“地球年”之间 。】才可以搬运完成。
参考:感谢这位大佬的分析