手把手利用学校的教育邮箱

本文介绍了如何利用学校的edu邮箱免费注册Office365教育版,详细步骤包括申请edu邮箱、登陆邮箱以及获取教育版Office365。适合学生群体,特别是暨大等支持在线申请学子邮的学校。
摘要由CSDN通过智能技术生成

 

首页下载APP

 

利用学校的edu邮箱免费注册教育版Office365

眯杰

利用学校的edu邮箱免费注册教育版Office365

眯杰

0.5412017.10.11 09:30:39字数 1,245阅读 68,240

更新

2019.1.23:我同学试过说是可以激活桌面版office三件套的,我没有亲测。


起因

很久之前我就知道edu域名邮箱的各种好处,最出名的就是AWS的学生优惠券,🍎 music的学生半价优惠,以及Office365教育版,因此梦寐以求地要上一所对现代数字生活向往的大学(因为有的大学不向学生派发edu邮箱)。进了暨大,了解到学校接入微信企业平台,支付宝充值饭卡,交续网费,以及数字暨大主页,极大的便利了老师和学生们的教育生活,我发现我当初的选择是正确的。(为暨大打call)

入学之后同学们开始加入各种组织,于是就需要各种办公软件,Office套件自然在列。有的笔记本是会赠送Office套件的(一般都会在网页图文介绍或机箱&笔记本上贴有Office的贴纸),然而有的笔记本是不赠送的,然而面对299一年的Office365个人版(包含1T的OneDrive储存),或399买断Office2016,都不是一项小数目。

因此巨硬(误)就推出了教育版Office365(Office套件以及免费的OneDrive储存)。虽说是Web版,但日常使用也是足够的,对于学生来说,关键是免费不是吗?
不要跟我说WPS也免费,免费的就是最贵的。这个定律同样适用于Office365教育版。

正文

1.准备edu邮箱

<
使用VGG19进行图像分类是一个经典的深度学习项目,VGG19是一种预先训练好的卷积神经网络模型,特别适合于计算机视觉任务。以下是手把手教你如何在Python(比如TensorFlow或Keras库)中进行VGG19的应用: **1. 导入所需库和模块** ```python import tensorflow as tf from tensorflow.keras.applications import VGG19 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.preprocessing.image import ImageDataGenerator ``` **2. 加载预训练的VGG19模型** ```python vgg = VGG19(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) ``` 注意,`weights='imagenet'`意味着加载的是已经在ImageNet数据集上预训练的权重。 **3. 冻结模型层** 为了进行特征提取,我们可以冻结VGG19的所有层,防止它们在微调过程中改变: ```python for layer in vgg.layers: layer.trainable = False ``` **4. 添加自定义层和分类头** ```python x = Flatten()(vgg.output) x = Dense(4096, activation='relu')(x) # 预设全连接层 x = Dense(4096, activation='relu')(x) # 可能需要调整层数和节点数 predictions = Dense(num_classes, activation='softmax')(x) # num_classes是你的类别数量 model = Sequential([vgg, predictions]) ``` **5. 编译模型** ```python model.compile(optimizer=tf.optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy']) ``` **6. 数据预处理和生成器** 创建ImageDataGenerator用于数据增强,提高模型的泛化能力: ```python train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224), batch_size=batch_size, class_mode='categorical') validation_generator = test_datagen.flow_from_directory(validation_dir, target_size=(224, 224), batch_size=batch_size, class_mode='categorical') ``` **7. 训练模型** ```python history = model.fit(train_generator, epochs=num_epochs, validation_data=validation_generator) ``` **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值