- 博客(57)
- 收藏
- 关注
原创 深度学习 作业6
import os#讀取 label.csvimport pandas as pd#讀取圖片from PIL import Imageimport numpy as npimport torch#Loss functionimport torch.nn.functional as F#讀取資料import torchvision.datasets as datasetsfrom torch.utils.data import Dataset, DataLoader#載入預訓練的模型
2021-09-27 23:44:59
145
原创 深度学习 作业5
Start our python script 引入库import osimport sysimport argparseimport numpy as npfrom PIL import Imageimport matplotlib.pyplot as pltimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.optim import Adamfrom torch.utils.data
2021-09-24 22:50:56
317
原创 深度学习 zuoye4
Download Dataset有三個檔案,分別是training_label.txt、training_nolabel.txt、testing_data.txttraining_label.txt:有label的training data(句子配上0 or 1)training_nolabel.txt:沒有label的training data(只有句子),用来做半监督学习,约120万句句子。比如: hates being this burnt !! ouch,前面没有0或者1的标签test
2021-09-23 00:05:38
821
原创 李宏毅 深度学习作业3 CNN
#Import 需要的套件import osimport numpy as npimport cv2import torchimport torch.nn as nnimport torchvision.transforms as transformsimport pandas as pdfrom torch.utils.data import DataLoader, Datasetimport time#Read image 利用 OpenCV (cv2) 讀入照片並存放在 numpy
2021-09-17 23:26:59
1145
原创 深度学习11
Generative Adversarial NetworkConditional Sequence Generation用maximize likelihood(也可以称为minimize cross entropy)训练seq2seq model 的问题是training criterion很难选到合适的与普通Gradient更新(更新一次参数,再求一个gradient,再更新…)的不同,在这里更新参数后需要返回互动,需要重新互动N收集数据,然后再求gradient,再更新参数…
2021-09-01 21:01:05
278
原创 深度学习10
Feature ExtractionInfoGAN对于Regular GAN而言,我们很难从输入和输出中找到某种关联(Modifying a specific dimension, no clear meaning),例如下图中,每一列都是改变了输入的某一个维度,然后得到的结果,我们并不知道为什么第三行第六列为什么会突然多一个小尾巴。InfoGAN就是要解决这个问题。来看它的概念:What is InfoGAN?来看流程,现有一个输入z zz,和原始GAN不一样,这里把输入分为两个部分然后经过
2021-08-26 22:12:49
133
原创 深度学习9
Theory behind GAN比如说,假如我们想要生成一些人脸图,实际上,我们是想找到一个分布,从这个分布内sample出来的图片,像是人脸,而不属于这个distribution的分布,生成的就不是人脸。而GAN要做的就是找到这个distribution。Maximum Likelihood Estimation最大似然估计的理念是,假如说我们的数据集的分布是Pdata(x) ,我们定义一个分布 PG(x;θ),我们想要找到一组参数 θ ,使得 PG(x;θ)接近Pdata(x) 。比如
2021-08-25 22:14:39
115
原创 深度学习7
PyTorch Tutorialtorch.device 定义cpuConvolutional Neural NetworkCNN常常被用在影像处理上CNN做的事情其实是,来简化这个neural network的架构,根据自己的知识和对图像处理的理解,一开始就把某些实际上用不到的参数给过滤掉。一个neural并不需要取观察整张图片,而是只需要观察一个小部分即可,所以,一个neural只需要连接到一个小块的区域就好,
2021-08-23 11:22:23
157
原创 深度学习6
Backpropagation在神经网络中,却是拥有着大量的可能多达上百万个的参数,是一个百万维的向量,传统的求微分方法行不通,这样就需要应用Backpropagation去有效的计算出微分Chain RuleTips for Training DNNdeep learning 的方法:三步法大纲,define-goodness-pick1、一般的机器学习方法(如KNN,决策树等)不会在train好的模型上检查training data的结果,因为NN在train
2021-08-22 10:44:46
150
原创 深度学习4
Classification例子首先以binary classification(二元分类)为例,我们在Training时让输入为class 1的输出为1,输入为class 2的输出为-1;那么在testing的时候,regression output是一个数值,它大于0接近1则说明它是class 1,它小于0接近-1则说明它是class 2。Ideal Alternatives怎么得到P(x|C1)和P(x|C2)估测均值μ和协方差的方法就是极大似然估计法
2021-08-21 15:36:50
83
原创 深度学习3
mt + 1 : 动量L(θt;x t) : 表示y 和 y^ 之间的差距• Find a ???? to get the lowest Σ???? ????(????; ????) !!• Or, Find a ???? to get the lowest ????(????) !!SGDSGDMMomentum项相当于速度,因为β稍小于1,表现出一些摩擦力,所以球不会无限加速下去,所以不像梯度下降法,每一步都独立于之前的步骤,你的球可以向下滚,获得动量,可以从碗向下加速获得动量。
2021-08-20 23:18:04
73
原创 linux
第一天知识点回顾操作系统 就是软件承上启下虚拟机软件模拟真实计算机查看目录命令ls tree清除 clear切换目录命令绝对路径和相对路径创建\删除文件及目录命令查看文件内容命令ls /bin | more软链接硬链接查找文件命令...
2021-08-12 17:30:58
56
原创 panda行列 统计方法和字符串离散化
dataFrame的索引bool索引和缺失数据的处理pandas的常用统计方法获取演员人数【统计方法和字符串离散化】电影数直方图
2021-07-31 12:05:43
83
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人