- 博客(18)
- 收藏
- 关注
原创 数据结构算法(C,C++)南邮考研自用
数据结构算法南邮数据结构自己整理的基础算法,掺杂了南邮的C语言教材和王道教材章节目录数据结构算法一级目录二级目录三级目录&2 线性表&2.1 顺序表&2.2 链式存储&2.2.1单链表类型定义&2.2.2带表头结点的单链表&2.2.3循环单链表&2.2.4双向链表&2.2.5循环双链表&2.2.6静态链表&2.2.7线性表应用&3 栈和队列&3.1 栈&3.1.1 栈顺序结构实现&3.1.2
2021-11-29 12:42:36 2671 1
原创 南邮汇编实验2——串口测试
南邮汇编实验2——串口测试串口测试,实现电脑的自发自收。发送用查询方式,接收用中断方式。 .586DATA SEGMENT USE16OLD0C DD ? ;存放中断向量FLAG DB 0 ;结束DATA ENDSCODE SEGMENT USE16 ASSUME CS
2020-11-17 16:00:31 1360
原创 降低损失:梯度下降法
降低损失:梯度下降法回归问题: 产生的损失与w1的图形始终是凹型(碗状图)凹形只有一个 最低点 :即只存在一个 斜率正好为0 的位置这个最低点就是 损失函数收敛 之处不过通过计算整个数据集中w1每个可能值得损失函数来找到收敛点效率过于低下,引出 梯度下降法梯度下降法① 为 w1 选择一个 起点 。ps:起点并不重要,所以大多算法直接将 w1 设为 0 或者 随机选择一个值② 计算损失曲线在起点处的 梯度 ,换言之,梯度是 偏导数 的矢量,了解哪个方向距离目标“更近”或“更远”损失相
2020-11-05 14:05:57 270
原创 降低损失:迭代方法
降低损失:迭代方法迭代学习 类似与 “Hot and Cold” 这类儿童游戏”隐藏的物品 就是最佳模型预测推理 逐步接近目标以下为机器学习算法用于训练模型的迭代试错过程整个机器学习过程中使用相同的 迭代方法 详细说明各种复杂情况,尤其处于 暴风雨中的蓝云区域“模型” 部分将 一个或多个特征 作为输入,然后返回 一个预测(y’) 作为输出先进行简化,考虑一种采用一个特征并返回一个预测的模型 y' = b + w1x1对于线性回归问题,事实证明 初始值并不重要随便取值:
2020-11-03 11:58:54 319
原创 深入了解机器学习:训练与损失
深入了解机器学习:训练与损失训练模型 通过有标签样本学习并确定 所有权重和偏差的理想值经验风险最小化: 监督式学习中,算法通过以下方式构建模型检查多个样本并尝试找出可最大限度地减少损失的模型损失 是对糟糕预测的惩罚① 一个数值,表示 单个样本 对模型预测的准确程度② 模型预测完成准确,则损失为零,否则损失会较大训练模型的 目标:从所有样本中找到一组平均损失 “ 较小 ” 的权重和偏差eq.从两张图中可知,第一张图损失较大,第二张图损失较小一图 红色箭头 比 对应的二图 红色
2020-11-02 21:28:45 550
原创 深入了解机器学习:线性回归
深入了解机器学习:线性回归数据绘制成表:每分钟虫鸣声与温度之间的关系 可否认为是线性关系?绘制一条直线 可以看出 每分钟虫鸣声与温度 之间应是线性关系。运用代数关系:y = mx+by 指的是温度(以摄氏度表示),即我们试图预测的值。**m **指的是温度(以摄氏度表示),即我们试图预测的值。x 指的是每分钟的鸣叫声次数,即输入特征的值。**b **指的是 y 轴截距。机器学习的模型方程式y' = w1x1+by’ 指的是预测标签(理想输出值)。b 指的是偏差(y 轴
2020-11-02 12:51:21 163
原创 Google 机器学习——框架处理
机器学习Google框架处理课程视频框架处理什么是(监督式)机器学习?机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测基本术语标签:要预测的事物,简单线性回归中的y变量可以是小麦未来的价格、图片中的动物品种特征:输入变量,简单线性回归中的x变量简单的机器学习项目可能会使用单个特征,比较复杂的机器学习项目可能会使用数百万个特征,按如下方式指定 ↓X1,X2,X3,X4,……,XN样本:数据的特定实例:X0样本分为两类:1、有标签样本 2、无标
2020-10-27 21:06:07 194
原创 南邮操作系统实验1
南邮操作系统实验1实验1:运行以下程序,判断该程序创建了多少进程?#include <stdio.h>#include <unistd.h>main(){ pid_t pid1,pid2; pid1=fork(); pid2=fork(); printf("pid = %d\n", getpid()); sleep(20); //为了观察}运行结果截图实验2:1、父进程创建管道 2、父进程向管
2020-10-27 19:32:40 1939
原创 南邮微机接口汇编实验1
南邮汇编程序实验更改程序,使其正常运行更改后的代码:;FILENAME: EXA131.ASM;.486DATA SEGMENT ; DATA SEGMENT为段定义语句,段名为DATA,USE16单元有效地址为16位,16位寻址方式SUM DW ? ;变量名为SUM,定义2个字节变量MESG DB '25+9=' ;变量名为MESG,定义字节变量 DB 0,
2020-10-27 19:01:09 2676
原创 南邮微机接口汇编实验2
#南邮汇编实验##用户登陆验证程序的设计第二次实验,名称“用户登陆验证程序的设计”,实验要求:1)运行程序后,界面首先出现自己的学号,例如“B18060701”2)在学号下方输入登录密码,密码长度不超过30个字符。密码内容不能显示在屏幕上,要求用字符*替代。3)验证输入密码与事先设定的密码是否相同,如果密码正确,给出提示“OK”,程序结束;如果密码不正确,重新输出学号,继续输入密码。4)选作内容:如果连续5次密码输入都不正确,界面提示“LOCKED”,退出程序。提示: 1)为了实现在学号
2020-10-16 17:02:54 5349
原创 阿里云ECS训练营入门班Day5—基于ECS和NAS搭建个人网盘
阿里云ECS训练营入门班—Day5基于ECS和NAS搭建个人网盘1、连接ECS服务器①打开终端工具:Windows:打开命令窗口。MAC:打开命令行终端Terminal②在终端中输入连接命令ssh [username]@[ipaddress]。您需要将其中的username和ipaddress替换为第1小节中创建的ECS服务器的用户名和弹性IP:ssh root@123.123.123.123③输入yes④同意继续后将会提示输入登录密码。 密码为已创建的云服务的ECS的登录密码:
2020-08-11 19:47:12 360
原创 阿里云ECS训练营入门班Day4—ECS电子书
阿里云ECS训练营入门班—Day4七天学会ECS的电子书第一课开通ECS以上链接可以进行购买ECS1、计费方式包年包月可以理解为是预付费产品,适合于长期稳定使用服务器的场景,比如说做网站按量付费可以理解为是后付费产品,适合于测试或者跑数据的场景2、地域地域就是服务器的数据中心所放在的城市可用区是同一地域下的不同数据中心3、网络经典网络是阿里云最早期的网络方式,同一地域内的所有 ECS、OSS、RDS都可以互联,然后通过安全组来实现访问的控制专有网络则是用户自有一个虚
2020-08-10 19:38:15 290
原创 阿里云ECS训练营入门班Day3—云端搭建Linux学习环境
阿里云ECS训练营入门班—Day3云端搭建Linux学习环境1、Linux的远程管理①命令终端:PuTTY:命令终端我们使用 PuTTY 软件,PuTTY 是自由的跨平台 Telnet/SSH 客户端,同时在 Win32 和 Unix 系统下模拟 xterm 终端。其主要作者是 Simon Tatham下载地址:https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html②文件传输:FileZilla:这里我们推荐免费
2020-08-08 20:02:19 253
原创 阿里云ECS训练营入门班Day2—搭建在线编程环境
阿里云ECS训练营入门班—Day2搭建在线编程环境1、服务器管理软件①PuTTY(管理终端):PuTTY 是⾃由的跨平台 Telnet/SSH 客户端,同时在 Win32 和 Unix 系统下模拟 xterm 终端。其主要作者是 Simon Tatham下载地址:https://github.com/larryli/PuTTY/releases②FileZilla(文件传输):推荐 Filezilla 通过 SFTP 协议进⾏本地和服务器的⽂件传输和管理下载地址: https://fil
2020-08-07 21:02:43 360
原创 阿里云ECS训练营入门班Day1—搭建简历网站
阿里云ECS训练营入门班—Day1搭建简历网站1、开通ECS①计费方式:包年包月、按量收费②地域:地域就是服务器的数据中心所放在的城市,例如华东1是在杭州,华东2是在上海,不同地域的ECS不可内网互联与可用区区别:可用区是同一地域下的不同数据中心,在同一个地域距离较近,可以通过光纤连接,内网可以互联③网络:经典网络:经典网络是阿里云最早期的网络方式,同一地域内的所有ECS、OSS、RDS都可以互联,然后通过安全组来实现访问的控制专有网络:专有网络则是用户自有一个虚拟路由网络和交换机
2020-08-06 21:06:28 349
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人