BCI | BCI Competition III:Wadsworth BCI Dataset简介

本文介绍了P300事件相关电位,这是一种大脑对小概率事件反应的内源性电位,常通过Oddball范式诱发。数据集来源于BCI2000平台,用于P300诱发电位的研究,实验中用户关注特定字母,通过闪烁的字母矩阵识别目标字母。数据采集涉及两位受试者,包含训练和测试数据,采用6x6字母矩阵刺激范式。提供的示例程序展示了如何处理数据以预测受试者选择的字母。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

失踪人口回来更新 QAQ


O、P300事件相关电位简介

事件相关电位( Event-related potentials, ERP)是大脑对某种事件进行信息加工时诱发产生的一系列电活动。其中,P300电位是一种内源性的事件相关电位,与认知功能相关的,对概率相对较小的外界事件(刺激)发生的反应,其峰值一般出现在相关事件发生后300毫秒左右。P300电位一般由Oddball范式来诱发,经典Oddball范式是指两种概率有很大差别的刺激以随机的形式施加于同一感觉通道上。一种刺激出现的概率很大,称为标准刺激;另一种刺激出现的概率很小或偶然出现,则称为偏差刺激。若当偏差刺激出现的瞬间,受试者就尽快做出如默数刺激出现次数之类的反应。在实验过程中,受试者需要关注偏差刺激,只要偏差刺激一出现就尽快做出反应(如默数出现次数等),此时,偏差刺激也称为靶刺激。只有将小概率出现的偏差刺激作为靶刺激,才能诱发P300电位。EEG脑信号在靶刺激呈现后300ms左右出现一个正向峰值,这就是P300电位。
在这里插入图片描述

一、数据集介绍

数据集下载地址

该数据集是使用BCI2000平台记录的基于P300诱发电位的完整数据。此处所使用的P300范式是Donchin等人在2000年提出的。实验中,用户将注意力集中在36个不同字母中的一个。竞赛要达到的目的是正确预测出用户在每轮字母表挑选时选择出的那个字母。

二、刺激范式介绍

用户会看到一个6乘6的字母矩阵(如下图所示)。用户需要做的是将注意力集中在研究者指定的某个字幕上(一次只能指定一个字母)。字母矩阵的所有行和列都会以5.7Hz 的频率依次随机闪烁。在12次的闪烁中(一共6行6列,所以是12次),有两次包含所需的字母(一个特定的行和一个特定的列交叉处的字母)。因为由包含特定字母所在行和列闪烁引起的刺激与不包含特定字符的引起的刺激不同,从而基于此可以达到识别目的。

在这里插入图片描述

三、数据采集

实验采集两名受试者的信号,每人分别做5组实验,数据进行了0.1-60Hz 带通滤波和240Hz数字化处理。每组实验包括许多个测试。在每一次测试中,受试者都需要把注意力都集中在一系列字母上。受试者在每次测试中看到的画面如下:

  1. 字母矩阵保持不闪烁状态2.5s,这2.5s字母矩阵上所有的字母都不闪烁。2. 然后某一行/某一列开始随机闪烁100ms,一共闪烁12次(6行6列各闪烁一次,也就是产生12种不同的刺激)。
  2. 矩阵回复原始不闪烁状态75ms
  3. 每12次闪烁为一个set,每个set都需要重复15次,也就是识别一个字母需要进行12*15=180次闪烁。
  4. 180次闪烁完成后,回到步骤1,且在这2.5s内会提示受试者当前字母已完成,屏幕上方出现需要关注的下一个字母。
    在这里插入图片描述

四、数据集介绍

竞赛所需的所有数据都放在了4个.mat文件里,包括85个字母的训练数据集和100个字母的测试数据集,Subject A/B代表两个不同的受试者。所有的数据集是用单精度存储的,在Matlab里可以使用double函数转化为双精度。在每个.mat文件里,64通道的数据都被合并成了一个大的数据矩阵,(主办方为了防止根据前面的字母猜出单词,所以训练集和测试集的字母顺序是打乱的)。

数据矩阵里变量的编码含义:
Flashing:1代表有行/列闪烁,0表示没有 ;
StimulusCode:0表示没有行/列在闪烁,1-6和7-12分别代表不同行和列;
在这里插入图片描述
StimulusType:0代表没有行/列在闪烁或者当前闪烁的行/列中不包含预期的字母。1表示正在闪烁的行/列中包含预期字母;
TargetChar:训练集中预期字母的label。

数据矩阵格式介绍:
在这里插入图片描述

example.m
数据集文件中提供了一个演示程序,从Cz导联提取信息,使用的是非常简单的峰值提取算法预测受试者A在测试数据集中所选的字母。将Matlab文件路径切换到数据集文件下,终端输入example即可运行。
在这里插入图片描述

<think>好的,用户需要查找关于运动想象IIIa数据集的下载和介绍信息。首先,我需要回忆一下BCI竞赛的数据集情况。根据用户提供的引用,引用[1]提到了BCI竞赛III中的数据集IIIa,包含三个受试者的数据,每个试验的类别和数量。同时,引用[2]也提到了BCI III dataset II,但可能不太相关。用户的主要需求是IIIa数据集,所以需要聚焦在竞赛III的数据集IIIa上。 接下来,我需要确定数据集的具体内容和结构。根据引用[1],数据集IIIa包括四类运动想象任务:左手、右手、脚和舌头。受试者K3b有180个训练和测试试验,而K6b和L1b各有120个。这可能意味着数据集分为不同的受试者文件,用户可能需要分别下载。 关于下载资源,通常BCI竞赛的数据集可以在官方网站或学术平台上找到。例如,BCI Competition III的官方网站可能仍然提供数据下载,或者托管在如OpenNeuro等数据共享平台。另外,用户可能需要通过学术论文或相关研究获取数据链接,比如引用[4]中的example.m文件可能来自某个数据集包,但不确定是否直接相关。 用户还可能想知道数据格式,比如EEG信号的采样率、通道数等。引用[2]提到多标记标签数维度/通道数多源,可能涉及多通道EEG数据。需要指出数据的具体参数,如通道数量、采样率等,这通常在数据集的文档中有详细说明。 另外,用户可能需要处理该数据集的工具或代码示例。引用[4]中的Matlab示例可能是一个起点,但可能需要调整以适应IIIa数据集的结构。可能需要推荐常用的库如MNE-Python或EEGLab来处理EEG数据。 还需要考虑用户可能的后续需求,比如预处理方法、特征提取或分类算法。虽然用户当前的问题集中在下载和介绍,但生成的问题可以引导他们进一步探索。 最后,确保回答符合格式要求,使用正确的中文,行内公式用$...$,独立公式用$$...$$,但在这个问题中可能涉及较少的数学公式,更多是数据集的结构描述。引用正确的来源,如引用[1]和[2],但要注意用户提供的引用可能与实际数据集文档有所不同,需要明确标注参考了用户提供的引用内容。</think>### 运动想象 IIIa 数据集介绍与获取指南 #### 1. 数据集基本信息 运动想象IIIa数据集来源于**BCI竞赛III**[^1],主要包含以下内容: - **受试者**:3名(K3b、K6b、L1b) - **任务类别**:四类运动想象(左手、右手、脚、舌头) - **数据规模**: - K3b:训练集和测试集各180次试验 - K6b/L1b:训练集和测试集各120次试验 - **信号特征**:多通道EEG信号(具体通道数未明确说明,但类似数据集常包含60-64导联)[^2] #### 2. 数据获取途径 建议通过以下方式获取原始数据: 1. **BCI竞赛官网**:访问[BCI Competition III](http://www.bbci.de/competition/iii/)页面查找"Dataset IIIa"下载链接 2. **学术数据平台**:在[OpenNeuro](https://openneuro.org/)或[Kaggle](https://www.kaggle.com/)搜索关键词`BCI Competition IIIa` 3. **GitHub资源库**:部分研究者会公开处理过的数据集版本,例如: ```bash git clone https://github.com/neuroergo/BCI-Competition-Datasets ``` #### 3. 数据结构示例 数据通常包含: - `.mat`文件(MATLAB格式) - 标注信息文本文件 - 实验范式说明文档 #### 4. 典型处理代码框架 使用Python处理EEG信号的示例: ```python import scipy.io as sio # 加载K3b受试者数据 data = sio.loadmat('K3b.mat') eeg_signals = data['X'] # 形状为(试验数, 通道数, 时间点) labels = data['y'].flatten() # 类别标签向量 # 可视化第一个通道的信号 import matplotlib.pyplot as plt plt.plot(eeg_signals[0,0,:]) plt.xlabel('采样点') plt.ylabel('电压($\mu V$)') plt.show() ``` #### 5. 关键研究论文 1. 《Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement》[^1] 2. 《BCI Competition 2003-Data Set IIIa: Validation of Feature Components》[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只殿鹿

爱屋及乌(滑稽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值