一、随机变量
定义:设E是随机试验,它的样本空间是S={e}。如果对于每一个e∈S,有一个实数X(e)与之对应,这样就得到一个定义在S上的单值实值函数X(e),称X(e)为随机变量。
二、离散型随机变量及其分布律
离散型随机变量的分布律:设离散型随机变量X的所有可能取的值为Xk(k=1,2,···),X取各个可能值的概率,即事件{X=Xk}的概率,为
P{X=Xk}=pk ,k=1,2,···
离散型随机变量的分布律也可以表示为:
常见离散型随机变量的概率分布:
1、两点分布:
2、等可能分布:
3、二项分布:
(1)、独立重复试验
将试验E重复进行n次,若个各次试验的结果互不影响,则称这n次试验是相互独立的或称为n;次独立重复试验
(2)、n重伯努利试验
设试验E只有两个可能结果,则称E为伯努利试验。将E独立重复进行n次,则称为n重伯努利试验
(3)、二项概率公式
若X表示n重伯努利试验中A发生的次数,X所有可能取的值为0,1,2,···,n
X的分布律为
称这样的分布为二项分布,记为X~b(n,p)
4、泊松分布
设随机变量所有可能取的值为0,1,2,···,而取各个值的概率为
P{X=k}=λke-λ/k!, k=0,1,2,···
其中λ>0是常数。则称X服从参数为λ的泊松分布,记为X~π(λ)
n->+∞时,λ=np,二项分布=泊松分布
5、几何分布
三、随机变量的分布函数
定义:设X是一个】随机变量,x是任意实数,F(x)=P{X<=x}称为X的分布函数
F(-∞)=0;F(+∞)=1
重要公式:P{a<x≤b}=F(b)-F(a)
p{X>a}=1-F(a)
四、连续型随机变量及其概率密度
∫[-∞,+∞]f(x)dx=1
P{x1<X≤x2}=F(x2)-F(x1)=∫[x1,x2]f(x)dx
常见连续型随机变量的分布:
(1)、均匀分布
记为X~U(a,b)
分布函数:
(2)、指数分布
分布函数:
(3)、正态分布
记为X~N(μ,σ2)
标准正态分布:N(0,1)
即:
其分布函数:
∫[x1,x2]φ(x)dx=Φ(x2)-Φ(x1)
引理:Z=(X-μ)/σ~N(0,1)
P{x1≤X≤X2}=Φ((x1-μ)/σ)-Φ((x2-μ)/σ)
Φ(-x)=1-Φ(x)
五、随机变量函数的分布
离散型随机变量函数的分布:
连续型随机变量函数的分布:
设-∞<x<+∞,Y=g(X),恒有g’(x)>0或g’(x)<0,则称Y=g(X)是连续型随机变量
若不满足恒有g’(x)>0或g’(x)<0,则:
FY(y)=P{Y≤y}=P{g(X)≤y}=∫g(x)≤yfX(x)dx=∫g(x)≤yfX(h(y))d(h(y))
fY(y)=FY’(y)