安装Anaconda+conda指令入门


一、Python简介

​ Python是一种解释型语言,支持Windows,Linux,Mac平台。Python功能强大,有丰富的第三方库,能够提供各种应用场景的支持。

  • 关于Python版本,存在 Python2.x 和 Python3.x。官方说法:2020年1月1日,Python2将停止更新和维护。因此建议学习使用Python3。
  • Python 的优势:
    • Python是一门高级语言,所谓“高级”:是指抽象程度上比C等语言更高级。因此Python更接近人类思维,更容易上手。
    • Python有良好的生态,丰富的第三方库,将Python武装成能应对Web开发、网络安全、游戏开发、网络爬虫、数据处理、机器学习等领域的全能型语言。
    • Python是胶水语言,能够粘合本不兼容的代码,如:Cpython、Jython.
  • Python的劣势:
    • Python的性能劣势,不够底层,不如C快。但是经过优化,Python的速度在某些情况下,不弱于C
    • Python是动态语言,大型程序难以维护、修改重构。动态一时爽,事后火葬场。。。

二、Python安装

大一时安装Python的惨像,已使我目不忍视了;失败报错,尤使我耳不忍闻。我还有什么话可说呢?

​ 想要在自己的系统中运行Python就需要安装Python解释器,就像运行C语言需要 gcc 编译器一样。可以选择下载Python安装,但我更建议安装Anaconda。Wiki百科介绍如下:

Anaconda是一个免费开源的Python和R语言的发行版本,用于计算科学(数据科学、机器学习、大数据处理和预测分析,Anaconda致力于简化包管理和部署。Anaconda的包使用软件包管理系统Conda进行管理。超过1200万人使用Anaconda发行版本,并且Anaconda拥有超过1400个适用于Windows、Linux和MacOS的数据科学软件包

​ 简单来说Anaconda提供了1mol的扩展包,以及一个非常好用的管理这些包的工具conda。也就是Python是简约线条,而Anaconda是极致色彩。

​ Python第三方的模块库很多,之间的依赖关系复杂,需要一个工具来管理这些包。主流包管理工具有pip和conda两种,conda功能相对完善,因此推荐conda。

Windows10安装Anaconda

  1. 下载Anaconda,推荐清华镜像源

下载最新版本的Anaconda,注意64位系统选择x86_64版本,如图:

  1. 一路 next 或者 I agree ,直到出现下图:
  • 建议更改默认路径,因为之后安装多个虚拟环境后,Anaconda会占较大的存储空间。我这里更改为D:\Anaconda
  1. 在下一个界面,勾选两个选项:
  • 第一个选项:添加Anaconda到系统环境变量。目的是:在系统的任何位置打开命令终端都能够运行Python,这为我们以后配置Python的开发环境如SublimeText3Vs Code 提供很大的便利。
  • 第二个选项:设置Anaconda为默认的Python解释器。
  1. 之后一路next or install 就可以了,安装完成后再Windows开始菜单里会出现下图所示的快捷方式:
  • 第一个是Anaconda的一个管理界面
  • 第二、三个是Anaconda的两个命令行工具
  • 第四个是Jupyter notebook,一个基于Web的笔记本式交互开发环境,支持Markdown,非常适合学习使用。
  • 第六个是Spyder一个轻量级的文本式开发环境(没咋用过。。。)
  1. 验证Python是否安装成功

    1. 按下win + R,在窗口中输入cmd

    2. 在cmd命令行中输入

    python
    
    1. 如果出现以下内容,则安装正确
    Python 3.7.6 | packaged by conda-forge | (default, Jan  7 2020, 21:48:41) [MSC v.1916 64 bit (AMD64)] on win32
    Type "help", "copyright", "credits" or "license" for more information.
    >>>
    
    1. 如果出现以下内容,则安装有误
    'python' 不是内部或外部命令,也不是可运行的程序或批处理文件。
    
  • 如果有误建议重启系统,再次尝试验证。如果仍然错误,建议检查是否已经添加Anaconda到系统环境变量:

Linux安装Anaconda

  1. 下载Anaconda,同上。得到Anaconda-x.x.x-Linux-x86_64.sh文件
  2. 打开终端,cd 到下载路径:输入以下命令:
bash Anaconda-x.x.x-Linux-x86_64.sh  # 注意换成自己下载的对应文件名 
  1. 之后一路Enter,如果遇到选择就输入yes.
  2. 完成后,重启终端,输入:
 python
  1. 如果得到以下内容,说明Anaconda安装正确。
Python 3.7.4 (default, Aug 13 2019, 20:35:49) 
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 

三、Anaconda配置及conda指令

1. 添加国内镜像源

利用conda安装很多packages时,会发现下载很慢,这是因为Anaconda的服务器在国外,为了提高下载速度,可以添加国内的镜像源。

Windows

打开Anaconda Prompt,输入以下命令:

# 添加Anaconda的TUNA镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

# 需要pytorch的话,添加pytorch镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
 
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
Linux
  1. 修改 ~/.condarc文件
vi ~/.condarc
  1. 添加以下内容
channels:
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults
show_channel_urls: true

输入:wq,保存退出。

2.删除镜像源

# 恢复成默认下载源
conda config --remove-key channels

3. Anaconda升级

conda update conda 
conda update anaconda

4. Anaconda 卸载

Windows

依次执行以下步骤

  1. 打开Anaconda Prompt,输入以下命令,删除所有配置文件和目录
# 安装anaconda-clean
conda install anaconda-clean

# 运行anaconda-clean
anaconda-clean --yes
  1. 手动删除anaconda安装目录下的 envs和pkgs文件夹
  2. 在控制面板中,卸载anaconda程序
Linux

打开命令行,输入以下命令,删除所有配置文件和应用程序

# 安装anaconda-clean
conda install anaconda-clean

# 运行anaconda-clean
anaconda-clean --yes

# 删除程序
rm -rf ~/anaconda3

5.conda 包管理指令

指令作用
codna list列出所有已安装的包
conda install package_name安装软件包及其依赖项
conda remove package_name卸载包
conda update/upgrade --all更新环境中所有已安装的包
conda info显示当前conda环境的基本信息
conda help显示conda指令的帮助命令
conda create创建虚拟环境
conda -V显示conda 版本信息

6. conda 环境管理指令

指令作用
conda create -n env_name python=x.x创建名为env_name的虚拟环境
conda activate env_name进入env_name环境
conda deactivate离开环境,回到base环境
conda env list列出环境
conda env remove -n env_name删除env_name环境
conda env export > environment.yaml将环境导出为YAML文件
conda env create -f environment.yaml加载环境

四、结语

路漫漫其修远兮,吾将上下而求索。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值