文章目录
一、Python简介
Python是一种解释型语言,支持Windows,Linux,Mac平台。Python功能强大,有丰富的第三方库,能够提供各种应用场景的支持。
- 关于Python版本,存在 Python2.x 和 Python3.x。官方说法:2020年1月1日,Python2将停止更新和维护。因此建议学习使用Python3。
- Python 的优势:
- Python是一门高级语言,所谓“高级”:是指抽象程度上比C等语言更高级。因此Python更接近人类思维,更容易上手。
- Python有良好的生态,丰富的第三方库,将Python武装成能应对Web开发、网络安全、游戏开发、网络爬虫、数据处理、机器学习等领域的全能型语言。
- Python是胶水语言,能够粘合本不兼容的代码,如:Cpython、Jython.
- Python的劣势:
- Python的性能劣势,不够底层,不如C快。但是经过优化,Python的速度在某些情况下,不弱于C
- Python是动态语言,大型程序难以维护、修改重构。动态一时爽,事后火葬场。。。
二、Python安装
大一时安装Python的惨像,已使我目不忍视了;失败报错,尤使我耳不忍闻。我还有什么话可说呢?
想要在自己的系统中运行Python就需要安装Python解释器,就像运行C语言需要 gcc 编译器一样。可以选择下载Python安装,但我更建议安装Anaconda。Wiki百科介绍如下:
Anaconda是一个免费开源的Python和R语言的发行版本,用于计算科学(数据科学、机器学习、大数据处理和预测分析,Anaconda致力于简化包管理和部署。Anaconda的包使用软件包管理系统Conda进行管理。超过1200万人使用Anaconda发行版本,并且Anaconda拥有超过1400个适用于Windows、Linux和MacOS的数据科学软件包
简单来说Anaconda提供了1mol的扩展包,以及一个非常好用的管理这些包的工具conda。也就是Python是简约线条,而Anaconda是极致色彩。
Python第三方的模块库很多,之间的依赖关系复杂,需要一个工具来管理这些包。主流包管理工具有pip和conda两种,conda功能相对完善,因此推荐conda。
Windows10安装Anaconda
- 下载Anaconda,推荐清华镜像源。
下载最新版本的Anaconda,注意64位系统选择x86_64版本,如图:
- 一路 next 或者 I agree ,直到出现下图:
- 建议更改默认路径,因为之后安装多个虚拟环境后,Anaconda会占较大的存储空间。我这里更改为D:\Anaconda。
- 在下一个界面,勾选两个选项:
- 第一个选项:添加Anaconda到系统环境变量。目的是:在系统的任何位置打开命令终端都能够运行Python,这为我们以后配置Python的开发环境如SublimeText3,Vs Code 提供很大的便利。
- 第二个选项:设置Anaconda为默认的Python解释器。
- 之后一路next or install 就可以了,安装完成后再Windows开始菜单里会出现下图所示的快捷方式:
- 第一个是Anaconda的一个管理界面
- 第二、三个是Anaconda的两个命令行工具
- 第四个是Jupyter notebook,一个基于Web的笔记本式交互开发环境,支持Markdown,非常适合学习使用。
- 第六个是Spyder一个轻量级的文本式开发环境(没咋用过。。。)
-
验证Python是否安装成功
-
按下win + R,在窗口中输入
cmd
-
在cmd命令行中输入
python
- 如果出现以下内容,则安装正确
Python 3.7.6 | packaged by conda-forge | (default, Jan 7 2020, 21:48:41) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>>
- 如果出现以下内容,则安装有误
'python' 不是内部或外部命令,也不是可运行的程序或批处理文件。
-
-
如果有误建议重启系统,再次尝试验证。如果仍然错误,建议检查是否已经添加Anaconda到系统环境变量:
Linux安装Anaconda
- 下载Anaconda,同上。得到Anaconda-x.x.x-Linux-x86_64.sh文件
- 打开终端,cd 到下载路径:输入以下命令:
bash Anaconda-x.x.x-Linux-x86_64.sh # 注意换成自己下载的对应文件名
- 之后一路Enter,如果遇到选择就输入yes.
- 完成后,重启终端,输入:
python
- 如果得到以下内容,说明Anaconda安装正确。
Python 3.7.4 (default, Aug 13 2019, 20:35:49)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
三、Anaconda配置及conda指令
1. 添加国内镜像源
利用conda安装很多packages时,会发现下载很慢,这是因为Anaconda的服务器在国外,为了提高下载速度,可以添加国内的镜像源。
Windows
打开Anaconda Prompt,输入以下命令:
# 添加Anaconda的TUNA镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
# 需要pytorch的话,添加pytorch镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
Linux
- 修改 ~/.condarc文件
vi ~/.condarc
- 添加以下内容
channels:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
- https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: true
输入:wq
,保存退出。
2.删除镜像源
# 恢复成默认下载源
conda config --remove-key channels
3. Anaconda升级
conda update conda
conda update anaconda
4. Anaconda 卸载
Windows
依次执行以下步骤
- 打开Anaconda Prompt,输入以下命令,删除所有配置文件和目录
# 安装anaconda-clean
conda install anaconda-clean
# 运行anaconda-clean
anaconda-clean --yes
- 手动删除anaconda安装目录下的 envs和pkgs文件夹
- 在控制面板中,卸载anaconda程序
Linux
打开命令行,输入以下命令,删除所有配置文件和应用程序
# 安装anaconda-clean
conda install anaconda-clean
# 运行anaconda-clean
anaconda-clean --yes
# 删除程序
rm -rf ~/anaconda3
5.conda 包管理指令
指令 | 作用 |
---|---|
codna list | 列出所有已安装的包 |
conda install package_name | 安装软件包及其依赖项 |
conda remove package_name | 卸载包 |
conda update/upgrade --all | 更新环境中所有已安装的包 |
conda info | 显示当前conda环境的基本信息 |
conda help | 显示conda指令的帮助命令 |
conda create | 创建虚拟环境 |
conda -V | 显示conda 版本信息 |
6. conda 环境管理指令
指令 | 作用 |
---|---|
conda create -n env_name python=x.x | 创建名为env_name的虚拟环境 |
conda activate env_name | 进入env_name环境 |
conda deactivate | 离开环境,回到base环境 |
conda env list | 列出环境 |
conda env remove -n env_name | 删除env_name环境 |
conda env export > environment.yaml | 将环境导出为YAML文件 |
conda env create -f environment.yaml | 加载环境 |
四、结语
路漫漫其修远兮,吾将上下而求索。