小工具
常用的一些小工具
菜鸡啄虫
博客用于自己查资料,有问题咨询私聊
展开
-
PicGo + Gitee+Typora 搭建个人CSDN博客图床(超详细 截图教程)
目录1 Gitee设置1.1 新建仓库1.2 创建token2 PicGo 客户端配置2.1 下载客服端2.2 安装2.3 PicGo设置3 Typora设置1 Gitee设置1.1 新建仓库1.2 创建token大家将自己的令牌记录一下2 PicGo 客户端配置2.1 下载客服端下载客户端地址:https://github.com/Molunerfinn/PicGo/releases2.2 安装就正常安装就行了2.3 PicGo设置我安装的这个版本才能使用,2.03的版原创 2021-09-18 15:32:52 · 165 阅读 · 0 评论 -
【数据增强可用】随机抠图,贴,想怎么旋转就怎么旋转
前提准备:掩码制作见最后原图一张掩码图一张例如:代码import numpy as npimport cv2from PIL import Imagemask = Image.open(r'D:\Water_level_gauge\data\video_img\crop_img\stream0\mask\crop_5_18_stream0_day_0.jpg') # 掩码图img = Image.open(r'D:\Water_level_gauge\data\video_im原创 2021-08-13 14:25:51 · 292 阅读 · 0 评论 -
python二维数组去重复_python 去除二维数组/二维列表中的重复行方法
arr = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[3, 4],[1, 2]])print(np.array(list(set([tuple(t) for t in arr]))))必须先把列表中每个元素转化为tuple,因为list不可哈希但是tuple可哈希。如:转换成下列格式set(【(),(),()】)...原创 2021-06-04 14:34:46 · 1253 阅读 · 0 评论 -
对python脚本加密成pyd
from distutils.core import setupfrom Cython.Build import cythonizeimport osimport shutil"""代码编译成.pydpython compile_pyd.py build_ext --inplace"""file_dir = r'D:\Water_level_gauge\pack\Package\1'save_dir = r'D:\Water_level_gauge\pack\Package' #原创 2021-05-23 17:10:58 · 317 阅读 · 0 评论 -
pytoch数据结构
文章目录1序言2默认整数和浮点数3查看数据类型3.1查看类型3.2数据类型对应关系4定义数据类型4.1方法一4.2方法二5变量类型6数据类型的转换6.1torch.float()6.2type方法1序言本文的目的是将深度学习中所用到的数据类型进行整理,即数据类型和名字的对应。2默认整数和浮点数默认的整数类型:int64默认的浮点数浮点数类型:float323查看数据类型3.1查看类型1.print(a.dtype)2.print(b.dtype)3.2数据类型对应关系4定义数据类型原创 2021-03-29 19:01:38 · 660 阅读 · 0 评论 -
【Git】上传代码顺序
# 初始化git init# 设置签名(一般设置了系统名,不用进行这一步)git config user.name qiangxinxingit config user.email qiangxinxin@qq.comgit config --global user.name qiangxinxingit config --global user.email qiangxinixin@qq.com# 查看签名(查看后。位置发生改变,需要重新打开)cd~pwdcd ~/.原创 2021-03-25 10:26:21 · 309 阅读 · 0 评论 -
【labelme】解析json文件小工具
注解: 下列使用场景为2类箱子识别import jsonimport matplotlib.pyplot as pltimport numpy as npimport cv2import osfrom labelme import utilsfrom PIL import Imagejson_file_path = r'D:/00-机器学习/data/json' # 保存json文件的文件夹png_save_path = r'D:/00-机器学习/data/data_png_one.原创 2021-03-22 23:18:26 · 392 阅读 · 0 评论 -
常用损失函数
损失函数汇总1 目标检测类1.1 分类1.1.1 centerloss1.1.2 arcsoftmax2 图像分割类2.1 Dice loss1 目标检测类1.1 分类1.1.1 centerlossclass Centerloss(nn.Module): def __init__(self, lambdas, feature_num=2, class_num=10): super().__init__() self.lambdas = lambdas原创 2021-03-09 16:54:34 · 301 阅读 · 0 评论 -
【小工具】参数初始化
import torchimport numpy as np'参数初始化'params = torch.nn.Conv2d(1,1,3,1)# x = list(params.parameters())[0].datax = list(params.weight)[0].dataprint("nn.Conv2d:\n",x,x.mean(),x.std(),"\n")data = torch.randn([1,1,3,3],dtype=torch.float32)print("torch原创 2021-02-24 10:05:09 · 118 阅读 · 1 评论 -
特征库制作完整代码
import osfrom a_Net_module import *import torchfrom PIL import Imagefrom detect_img import Detectorimport cv2import numpy as npclass FaceDatabase(): def __init__(self, personName_path, params_path,database_path): device = torch.device原创 2021-01-29 13:48:27 · 284 阅读 · 0 评论 -
【IOU系列】分析+代码
IOU计算公式:所需要的数据:并集:两个矩形面积和—交集交集:两个矩形可能出现的情况代码:x_a=max(x1,x1_) y_a=max(y1,y1_) x_b=min(x2,x2_) y_b=min(y2,y2_) if x_b-x_a<=0 or y_b-y_a<=0: iou_ratio=0 #即不交的情原创 2020-12-28 15:15:59 · 320 阅读 · 2 评论 -
【pytorch】矩阵转为onehot
1、法一import torchdef one_hot(arr): zero_arr=torch.zeros(len(arr),max(arr)+1) zero_arr[torch.arange(len(arr)),arr]=1 return zero_arr原创 2020-12-22 13:15:43 · 465 阅读 · 0 评论 -
sample、 shutil.move 随机抽取文件中图片进行移动(用于从训练集抽取测试集)
问题描述:将训练集中图片随机移动2份(占比0.1),形成验证集和测试集完整代码import shutilimport randomimport os'''获取所有图片的路径;移动图片的数目获取随机移动图片的名称列表移动图片'''# shutil.move(train_path,verify_path)# random.sample()def move_file(file_dir,dst_dir): path_dir=os.listdir(file_dir) #源原创 2020-12-02 16:08:24 · 380 阅读 · 0 评论 -
删除文档中指定内容所在行 & 含有相同元素的则删除
1、相等内容则删除 def my_delete(self,target_line): del_path=r'img/my_data/cord.txt' #待删除内容存放地址 with open(del_path, 'r', encoding='utf-8') as f: l=f.readlines() f.close() '''去掉标签中换行符''' lines=[]原创 2020-12-22 13:05:08 · 157 阅读 · 0 评论 -
【Python】读取TXT文档的中文
一、代码部分with open('word.txt',mode='r',encoding='utf-8') as file: str=file.readlines()二、稍作解释原创 2020-11-03 13:12:38 · 2139 阅读 · 0 评论