每日一题:盛最多水的容器

该博客讨论了一个计算机算法问题,即如何找到一个数组中能盛最多水的两个元素组合。通过使用双指针技巧,从数组的两端开始向中间移动,每次更新最大水量。在每一步中,较短的板子决定水槽的高度,算法的时间复杂度为O(N),空间复杂度为O(1)。代码实现中展示了如何在Java中应用这个策略来求解问题。
摘要由CSDN通过智能技术生成

1、题目描述

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

2、示例输出

在这里插入图片描述

3、解题思路

设两指针 i , j ,指向的水槽板高度分别为 h[i] , h[j] ,此状态下水槽面积为 S(i, j) 。由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式 :

S(i, j) = min(h[i], h[j]) × (j - i)

在每个状态下,无论长板或短板向中间收窄一格,都会导致水槽 底边宽度 -1 变短:

若向内 移动短板 ,水槽的短板 min(h[i], h[j]) 可能变大,因此下个水槽的面积 可能增大 。

若向内 移动长板 ,水槽的短板 min(h[i], h[j]) 不变或变小,因此下个水槽的面积 一定变小 。

因此,初始化双指针分列水槽左右两端,循环每轮将短板向内移动一格,并更新面积最大值,直到两指针相遇时跳出;即可获得最大面积。

4、算法流程

1)初始化: 双指针 i , j 分列水槽左右两端;
2)循环收窄: 直至双指针相遇时跳出;
    a、更新面积最大值 res ;
    b、选定两板高度中的短板,向中间收窄一格;
3)返回值: 返回面积最大值 res 即可;

5、复杂度分析

1)时间复杂度 O(N):

双指针遍历一次底边宽度 NN​​ 。

2)空间复杂度 O(1) :

变量 i , j , res 使用常数额外空间。

6、代码

class Solution {
    public int maxArea(int[] height) {
        int i = 0, j = height.length - 1, res = 0;
        while(i < j) {
            res = height[i] < height[j] ? 
                Math.max(res, (j - i) * height[i++]): 
                Math.max(res, (j - i) * height[j--]); 
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值