1、题目描述
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
2、示例输出
3、解题思路
设两指针 i , j ,指向的水槽板高度分别为 h[i] , h[j] ,此状态下水槽面积为 S(i, j) 。由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式 :
S(i, j) = min(h[i], h[j]) × (j - i)
在每个状态下,无论长板或短板向中间收窄一格,都会导致水槽 底边宽度 -1 变短:
若向内 移动短板 ,水槽的短板 min(h[i], h[j]) 可能变大,因此下个水槽的面积 可能增大 。
若向内 移动长板 ,水槽的短板 min(h[i], h[j]) 不变或变小,因此下个水槽的面积 一定变小 。
因此,初始化双指针分列水槽左右两端,循环每轮将短板向内移动一格,并更新面积最大值,直到两指针相遇时跳出;即可获得最大面积。
4、算法流程
1)初始化: 双指针 i , j 分列水槽左右两端;
2)循环收窄: 直至双指针相遇时跳出;
a、更新面积最大值 res ;
b、选定两板高度中的短板,向中间收窄一格;
3)返回值: 返回面积最大值 res 即可;
5、复杂度分析
1)时间复杂度 O(N):
双指针遍历一次底边宽度 NN 。
2)空间复杂度 O(1) :
变量 i , j , res 使用常数额外空间。
6、代码
class Solution {
public int maxArea(int[] height) {
int i = 0, j = height.length - 1, res = 0;
while(i < j) {
res = height[i] < height[j] ?
Math.max(res, (j - i) * height[i++]):
Math.max(res, (j - i) * height[j--]);
}
return res;
}
}