F maximum clique 1
题解:
二分图最大独立集的练习题
• 最大团问题和最大独立集问题是互补的问题
• 两个相异的数至少两个 bit 不一样的否命题就是 : 恰一个 bit 不一样
• 可发现按照题目叙述所建的图的补图就是刚好是二分图
• 于是套用二分图最大独立集模板就把这题解决了
如果只求最大独立集,那么直接一个匈牙利直接搞定,但是还要输出集合!!!!!
找了好多个题解,才找到了一篇能看懂的!!!链接
以下是我的理解,先对图进行染色(一定是无向图),然后从颜色 1 出发匹配,得到最大匹配,那么颜色 1 对应的所有未匹配点一定可以加入最大独立集,颜色为 1 的未匹配点走增广路,被标记的、颜色为 1 的点 属于独立集,而颜色为 0 、被标记的点不属于独立集。
模板:
#include<bits/stdc++.h>
using namespace std;
const int N = 5e3+100;
typedef long long ll;
int n;
int a[N];
map<int, int> mp;
vector<int> g[N];
int link[N];
int vis[N];
int col[N];
int dfs(int u){
vis[u] = 1;
for(auto v:g[u]){
if(!vis[v]){
vis[v] = 1;
if(link[v] == -1 || dfs(link[v])){
link[v] = u;
link[u] = v;
return 1;
}
}
}
return 0;
}
int hungary(){
int res = 0;
memset(link, -1, sizeof link);
for(int i = 1; i <= n; i++){
if(col[i] == 1){ // 颜色为 1 的点匹配
memset(vis, 0, sizeof vis);
if(dfs(i)) res++;
}
}
return res;
}
void dfs2(int u){
for(auto v:g[u]){
if(col[v] == -1){
col[v] = 1^col[u];
dfs2(v);
}
}
}
int main(){
ios::sync_with_stdio(false);
cin >> n;
for(int i = 1; i <= n; i++){
cin >> a[i];
mp[a[i]] = i;
}
for(int i = 1; i <= n; i++){
for(int j = 0; j <= 31; j++){
int v = mp[a[i]^(1<<j)];
if(v){
g[i].push_back(v);// 无向图
}
}
}
memset(col, -1, sizeof col);
for(int i = 1; i <= n; i++){//染色
if(col[i] == -1){
col[i] = 1;
dfs2(i);
}
}
int res = hungary();
cout << n - res << "\n";
memset(vis, 0, sizeof vis);
for(int i = 1; i <= n; i++){
/*从颜色为 1 的未匹配点走增广路
颜色为 1 的未匹配点肯定属于最大独立集 ,
所以走一遍dfs后,标记的 颜色为 1 的点属于独立集,
而颜色为 0 标记的点不属于独立集 */
if(col[i] == 1 && link[i] == -1){
dfs(i);
}
}
for(int i = 1; i <= n; i++){
if(col[i] == 1 && vis[i]) cout << a[i] << " ";
if(col[i] == 0 && !vis[i]) cout << a[i] << " ";
}
cout << "\n";
return 0;
}