2019牛客暑期多校训练营(第五场) F maximum clique 1 二分图最大独立集 (输出集)

F maximum clique 1

题解:

二分图最大独立集的练习题

最大团问题和最大独立集问题是互补的问题

两个相异的数至少两个 bit 不一样的否命题就是 : 恰一个 bit 不一样

可发现按照题目叙述所建的图的补图就是刚好是二分图

于是套用二分图最大独立集模板就把这题解决了

如果只求最大独立集,那么直接一个匈牙利直接搞定,但是还要输出集合!!!!!

找了好多个题解,才找到了一篇能看懂的!!!链接

以下是我的理解,先对图进行染色(一定是无向图),然后从颜色 1 出发匹配,得到最大匹配,那么颜色 1 对应的所有未匹配点一定可以加入最大独立集,颜色为 1 的未匹配点走增广路,被标记的、颜色为 1 的点 属于独立集,而颜色为 0 、被标记的点不属于独立集。

模板:

#include<bits/stdc++.h>
using namespace std;
const int N = 5e3+100;
typedef long long ll;
int n;
int a[N];
map<int, int> mp;
vector<int> g[N];
int link[N];
int vis[N];
int col[N];
int dfs(int u){
	vis[u] = 1;
	for(auto v:g[u]){
		if(!vis[v]){
			vis[v] = 1;
			if(link[v] == -1 || dfs(link[v])){
				link[v] = u;
				link[u] = v;
				return 1;
			}
		}
	}
	return 0;
}

int hungary(){
	int res = 0;
	memset(link, -1, sizeof link);
	for(int i = 1; i <= n; i++){
		if(col[i] == 1){ // 颜色为 1 的点匹配 
			memset(vis, 0, sizeof vis);
			if(dfs(i)) res++;
		}
	}
	return res;
}

void dfs2(int u){
	for(auto v:g[u]){
		if(col[v] == -1){
			col[v] = 1^col[u];
			dfs2(v);
		}
	}
}
int main(){
	ios::sync_with_stdio(false);
	cin >> n;
	for(int i = 1; i <= n; i++){
		cin >> a[i];
		mp[a[i]] = i;
	}
	for(int i = 1; i <= n; i++){
		for(int j = 0; j <= 31; j++){
			int v = mp[a[i]^(1<<j)];
			if(v){
				g[i].push_back(v);// 无向图 
			}
		}
	}
	memset(col, -1, sizeof col);
	for(int i = 1; i <= n; i++){//染色 
		if(col[i] == -1){
			col[i] = 1;
			dfs2(i);
		}
	}
	int res = hungary();
	cout << n - res << "\n";
	memset(vis, 0, sizeof vis);
	for(int i = 1; i <= n; i++){
		/*从颜色为 1 的未匹配点走增广路 
		颜色为 1 的未匹配点肯定属于最大独立集 ,
		所以走一遍dfs后,标记的 颜色为 1 的点属于独立集,
		而颜色为 0 标记的点不属于独立集 */ 
		if(col[i] == 1 && link[i] == -1){
			dfs(i);
		}
	}
	for(int i = 1; i <= n; i++){
		if(col[i] == 1 && vis[i]) cout << a[i] << " ";
		if(col[i] == 0 && !vis[i]) cout << a[i] << " ";
	}
	cout << "\n";
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值