spark实现决策树

决策树基本原理
机器学习实战—决策树
决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树。

在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。

决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。

用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。

决策树学习的目标:根据给定的训练数据集构建一个决策树模型,使它能够对实例进行正确的分类。

决策树学习的本质:从训练集中归纳出一组分类规则,或者说是由训练数据集估计条件概率模型。

决策树学习的损失函数:正则化的极大似然函数

决策树学习的测试:最小化损失函数

决策树学习的目标:在损失函数的意义下,选择最优决策树的问题。
数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。一个决策树包含三种类型的节点:
决策节点:通常用矩形框来表示
机会节点:通常用圆圈来表示
终结点:通常用三角形来表示

剪枝是决策树停止分支的方法之一,剪枝有分预先剪枝和后剪枝两种。预先剪枝是在树的生长过程中设定一个指标,当达到该指标时就停止生长,这样做容易产生“视界局限”,就是一旦停止分支,使得节点N成为叶节点,就断绝了其后继节点进行“好”的分支操作的任何可能性。不严格的说这些已停止的分支会误导学习算法,导致产生的树不纯度降差最大的地方过分靠近根节点。后剪枝中树首先要充分生长,直到叶节点都有最小的不纯度值为止,因而可以克服“视界局限”。然后对所有相邻的成对叶节点考虑是否消去它们,如果消去能引起令人满意的不纯度增长,那么执行消去,并令它们的公共父节点成为新的叶节点。这种“合并”叶节点的做法和节点分支的过程恰好相反,经过剪枝后叶节点常常会分布在很宽的层次上,树也变得非平衡。后剪枝技术的优点是克服了“视界局限”效应,而且无需保留部分样本用于交叉验证,所以可以充分利用全部训练集的信息。但后剪枝的计算量代价比预剪枝方法大得多,特别是在大样本集中,不过对于小样本的情况,后剪枝方法还是优于预剪枝方法的。

spark实现决策树

我们以iris数据集(iris)为例进行分析。iris以鸢尾花的特征作为数据来源,数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性,是在数据挖掘、数据分类中非常常用的测试集、训练集。决策树可以用于分类和回归,接下来我们将在代码中分别进行介绍
导入所需要的包

from pyspark.ml.linalg import Vector,Vectors
from pyspark.sql import Row
from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString,StringIndexer,VectorIndexer

读取数据,简要分析:
读取文本文件,第一个map把每行的数据用“,”隔开,比如在我们的数据集中,每行被分成了5部分,前4部分是鸢尾花的4个特征,最后一部分是鸢尾花的分类;我们这里把特征存储在Vector中,创建一个Iris模式的RDD,然后转化成dataframe;然后把刚刚得到的数据注册成一个表iris,注册成这个表之后,我们就可以通过sql语句进行数据查询;选出我们需要的数据后,我们可以把结果打印出来查看一下数据。

def f(x):
    rel = {}
    rel['features'] = Vectors.dense(float(x[0]),float(x[1]),float(x[2]),float(x[3]))
    rel['label'] = str(x[4])
    return rel
 
data = spark.sparkContext.textFile("file:///usr/local/spark/iris.txt").map(lambda line: line.split(',')).map(lambda p: Row(**f(p))).toDF()
 
data.createOrReplaceTempView("iris")
 
df = spark.sql("select * from iris")
 
rel = df.rdd.map(lambda t : str(t[1])+":"+str(t[0])).collect()
for item in rel:
    print(item)
Iris-setosa:[5.1,3.5,1.4,0.2]
Iris-setosa:[4.9,3.0,1.4,0.2]
Iris-setosa:[4.7,3.2,1.3,0.2]
Iris-setosa:[4.6,3.1,1.5,0.2]
Iris-setosa:[5.0,3.6,1.4,0.2]
Iris-setosa:[5.4,3.9,1.7,0.4]
Iris-setosa:[4.6,3.4,1.4,0.3]
.....
Iris-versicolor:[5.7,2.8,4.1,1.3]
Iris-virginica:[6.3,3.3,6.0,2.5]
Iris-virginica:[5.8,2.7,5.1,1.9]
Iris-virginica:[7.1,3.0,5.9,2.1]
Iris-virginica:[6.3,2.9,5.6,1.8]
Iris-virginica:[6.5,3.0,5.8,2.2]
Iris-virginica:[7.6,3.0,6.6,2.1]
Iris-virginica:[4.9,2.5,4.5,1.7]
Iris-virginica:[7.3,2.9,6.3,1.8]
Iris-virginica:[6.7,2.5,5.8,1.8]
Iris-virginica:[7.2,3.6,6.1,2.5]
Iris-virginica:[6.5,3.2,5.1,2.0]
Iris-virginica:[6.4,2.7,5.3,1.9]
Iris-virginica:[6.8,3.0,5.5,2.1]
Iris-virginica:[5.7,2.5,5.0,2.0]
Iris-virginica:[5.8,2.8,5.1,2.4]
Iris-virginica:[6.4,3.2,5.3,2.3]
Iris-virginica:[6.5,3.0,5.5,1.8]
Iris-virginica:[7.7,3.8,6.7,2.2]
Iris-virginica:[7.7,2.6,6.9,2.3]
Iris-virginica:[6.0,2.2,5.0,1.5]
Iris-virginica:[6.9,3.2,5.7,2.3]
Iris-virginica:[5.6,2.8,4.9,2.0]
Iris-virginica:[7.7,2.8,6.7,2.0]
... ... 

进一步处理特征和标签,以及数据分组:

//分别获取标签列和特征列,进行索引,并进行了重命名。
labelIndexer = StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df)
 
featureIndexer = VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(df)
//这里我们设置一个labelConverter,目的是把预测的类别重新转化成字符型的。
labelConverter = IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
//接下来,我们把数据集随机分成训练集和测试集,其中训练集占70%。
trainingData, testData = data.randomSplit([0.7, 0.3])

构建决策树分类模型:

//导入所需要的包
from pyspark.ml.classification import DecisionTreeClassificationModel,DecisionTreeClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
//训练决策树模型,这里我们可以通过setter的方法来设置决策树的参数,也可以用ParamMap来设置(具体的可以查看spark mllib的官网)。具体的可以设置的参数可以通过explainParams()来获取。
dtClassifier = DecisionTreeClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")
//在pipeline中进行设置
pipelinedClassifier = Pipeline().setStages([labelIndexer, featureIndexer, dtClassifier, labelConverter])
//训练决策树模型
modelClassifier = pipelinedClassifier.fit(trainingData)
//进行预测
predictionsClassifier = modelClassifier.transform(testData)
//查看部分预测的结果
predictionsClassifier.select("predictedLabel", "label", "features").show(20)
+---------------+---------------+-----------------+
| predictedLabel|          label|         features|
+---------------+---------------+-----------------+
|    Iris-setosa|    Iris-setosa|[4.3,3.0,1.1,0.1]|
|    Iris-setosa|    Iris-setosa|[4.6,3.4,1.4,0.3]|
|    Iris-setosa|    Iris-setosa|[4.6,3.6,1.0,0.2]|
|    Iris-setosa|    Iris-setosa|[4.8,3.0,1.4,0.1]|
|    Iris-setosa|    Iris-setosa|[4.8,3.1,1.6,0.2]|
|    Iris-setosa|    Iris-setosa|[4.8,3.4,1.6,0.2]|
|    Iris-setosa|    Iris-setosa|[4.9,3.0,1.4,0.2]|
|    Iris-setosa|    Iris-setosa|[4.9,3.1,1.5,0.1]|
|    Iris-setosa|    Iris-setosa|[5.0,3.5,1.3,0.3]|
|    Iris-setosa|    Iris-setosa|[5.1,3.3,1.7,0.5]|
|    Iris-setosa|    Iris-setosa|[5.1,3.4,1.5,0.2]|
|    Iris-setosa|    Iris-setosa|[5.1,3.7,1.5,0.4]|
|    Iris-setosa|    Iris-setosa|[5.1,3.8,1.9,0.4]|
|Iris-versicolor|Iris-versicolor|[5.2,2.7,3.9,1.4]|
|    Iris-setosa|    Iris-setosa|[5.4,3.9,1.3,0.4]|
|Iris-versicolor|Iris-versicolor|[5.7,2.8,4.5,1.3]|
|Iris-versicolor|Iris-versicolor|[5.8,2.7,4.1,1.0]|
|    Iris-setosa|    Iris-setosa|[5.8,4.0,1.2,0.2]|
| Iris-virginica|Iris-versicolor|[5.9,3.2,4.8,1.8]|
|Iris-versicolor|Iris-versicolor|[6.1,2.9,4.7,1.4]|
+---------------+---------------+-----------------+
only showing top 20 rows

评估决策树分类模型:

evaluatorClassifier = MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("accuracy")
 
accuracy = evaluatorClassifier.evaluate(predictionsClassifier)
 
print("Test Error = " + str(1.0 - accuracy))
Test Error = 0.05882352941176472
 
treeModelClassifier = modelClassifier.stages[2]
 
print("Learned classification tree model:\n" + str(treeModelClassifier.toDebugString))
Learned classification tree model:
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_4e57b26beacfd363271a) of depth 3 with 7 nodes
  If (feature 2 <= 1.9)
   Predict: 2.0
  Else (feature 2 > 1.9)
   If (feature 3 <= 1.6)
    If (feature 2 <= 4.9)
     Predict: 0.0
    Else (feature 2 > 4.9)
     Predict: 1.0
   Else (feature 3 > 1.6)
    Predict: 1.0

​ 从上述结果可以看到模型的预测准确率为 0.94以及训练的决策树模型结构。
构建决策树回归模型:

//导入所需要的包
from pyspark.ml.regression import DecisionTreeRegressionModel,DecisionTreeRegressor
from pyspark.ml.evaluation import RegressionEvaluator
//训练决策树模型
dtRegressor = DecisionTreeRegressor().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")
//在pipeline中进行设置
pipelineRegressor = Pipeline().setStages([labelIndexer, featureIndexer, dtRegressor, labelConverter])
//训练决策树模型
modelRegressor = pipelineRegressor.fit(trainingData)
//进行预测
predictionsRegressor = modelRegressor.transform(testData)
//查看部分预测结果
predictionsRegressor.select("predictedLabel", "label", "features").show(20)
 
+---------------+---------------+-----------------+
| predictedLabel|          label|         features|
+---------------+---------------+-----------------+
|    Iris-setosa|    Iris-setosa|[4.3,3.0,1.1,0.1]|
|    Iris-setosa|    Iris-setosa|[4.6,3.4,1.4,0.3]|
|    Iris-setosa|    Iris-setosa|[4.6,3.6,1.0,0.2]|
|    Iris-setosa|    Iris-setosa|[4.8,3.0,1.4,0.1]|
|    Iris-setosa|    Iris-setosa|[4.8,3.1,1.6,0.2]|
|    Iris-setosa|    Iris-setosa|[4.8,3.4,1.6,0.2]|
|    Iris-setosa|    Iris-setosa|[4.9,3.0,1.4,0.2]|
|    Iris-setosa|    Iris-setosa|[4.9,3.1,1.5,0.1]|
|    Iris-setosa|    Iris-setosa|[5.0,3.5,1.3,0.3]|
|    Iris-setosa|    Iris-setosa|[5.1,3.3,1.7,0.5]|
|    Iris-setosa|    Iris-setosa|[5.1,3.4,1.5,0.2]|
|    Iris-setosa|    Iris-setosa|[5.1,3.7,1.5,0.4]|
|    Iris-setosa|    Iris-setosa|[5.1,3.8,1.9,0.4]|
|Iris-versicolor|Iris-versicolor|[5.2,2.7,3.9,1.4]|
|    Iris-setosa|    Iris-setosa|[5.4,3.9,1.3,0.4]|
|Iris-versicolor|Iris-versicolor|[5.7,2.8,4.5,1.3]|
|Iris-versicolor|Iris-versicolor|[5.8,2.7,4.1,1.0]|
|    Iris-setosa|    Iris-setosa|[5.8,4.0,1.2,0.2]|
| Iris-virginica|Iris-versicolor|[5.9,3.2,4.8,1.8]|
|Iris-versicolor|Iris-versicolor|[6.1,2.9,4.7,1.4]|
+---------------+---------------+-----------------+
only showing top 20 rows

评估决策树回归模型:

evaluatorRegressor = RegressionEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("rmse")
 
rmse = evaluatorRegressor.evaluate(predictionsRegressor)
 
print("Root Mean Squared Error (RMSE) on test data = " +str(rmse))
Root Mean Squared Error (RMSE) on test data = 0.24253562503633297
 
treeModelRegressor = modelRegressor.stages[2]
 
print("Learned regression tree model:\n" + str(treeModelRegressor.toDebugString))
Learned regression tree model:
DecisionTreeRegressionModel (uid=DecisionTreeRegressor_4325a44aff74cf6ff7b3) of depth 3 with 7 nodes
  If (feature 2 <= 1.9)
   Predict: 2.0
  Else (feature 2 > 1.9)
   If (feature 3 <= 1.6)
    If (feature 2 <= 4.9)
     Predict: 0.0
    Else (feature 2 > 4.9)
     Predict: 1.0
   Else (feature 3 > 1.6)
    Predict: 1.0

从上述结果可以看到模型的标准误差为 0.75以及训练的决策树模型结构。

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值