Silence的博客

不积跬步无以至千里

深度学习调参总结

2017-07-15 一、acc、val_acc停留在一个值附近,上下震荡 今天早上来到实验室 ,看了看昨天跑得结果,很好啊,acc、val_acc同步上升,基本没有甚麽偏差。心中一喜,可是acc还没有超过50%,虽然说在同步上升,但是没有任何卵用。想把程序停下来,但是看着它...

2017-07-15 10:58:14

阅读数 1574

评论数 0

推荐算法-AFM

推荐算法-AFM   推荐算法-AFM,这篇文章也是在FM的基础上做工作。这篇文章是针对特征之间组合时,不同的特征都是用同样的向量去做。即每一个特征和其它的特征进行组合时,都是采用同一个向量,缺乏不同特征之间的关联性不同,应该采用不同的向量。解决这个问题的一个思路就是FFM,即每一个特征针对每一个...

2019-05-24 10:07:42

阅读数 3

评论数 0

推荐算法-NFM

推荐算法-NFM   FM对于特征的组合仅限于二阶,缺少对特征之间深层次关系的抽取。因此,NFM提出来就是在FM的基础上引入神经网络,实现对特征的深层次抽取。NFM的模型结构图如下所示:   模型的结构如上图所示,首先输入就是离散化的特征,然后再进行embedding操作,获得每一个特征的向量表...

2019-05-22 10:45:15

阅读数 40

评论数 0

推荐算法-PNN(Product Network)

推荐算法-PNN   这篇文章出自上海交大,针对直接把Embedding之后的特征输入到神经网络中进行计算对特征的交叉组合不充分而提出来的。也是对特征的组合做文章的一种方法。 PNN网络结构   模型结构如下图所示: 可以看出模型也是实现CTR预估任务,输入数据是对特征进行one-ho...

2019-05-17 14:54:33

阅读数 6

评论数 0

推荐算法-Deep & Cross Network

推荐算法Deep & Cross Network   这篇文章是谷歌在2017年的一篇文章,是用在广告点击率预估上面的。从文章题目上来看,应该是包含两大块,Cross和Deep两个部分。原因应该很简单,还是在特征的组合上做文章。但是看完这篇文章之后,感觉很清爽,就是思路比较简单,...

2019-05-01 14:22:25

阅读数 86

评论数 0

推荐算法-DeepFM

推荐算法-DeepFM 一、DeepFM出现的原因   在FM中,采用了一阶和二阶的特征组合,相比与只使用一阶线性组合效果要好很多。但是特征组合的能力还是有限的。即特征之间组合的力度,挖掘特征之间的关联性还是较差的。在图像处理的一些方法中,模型的深度都比较深经过了很多层的非线性变换,主要的目的是为...

2019-04-30 13:38:14

阅读数 44

评论数 0

推荐算法-FM(Factorization Machine)

FMFM出现的原因FM的求解参考 FM出现的原因   FM是推荐系统中重要的方法,也有许多基于FM的变种。   FM的出现主要是为了解决线性模型的特征之间无法进行组合的问题。在LR模型中,特征之间都是独立存在的,无法体现特征之间的联系。比如有的女生喜欢化妆品,男生喜欢运动产品。单纯的使用w1∗x1...

2019-04-28 22:16:14

阅读数 36

评论数 0

C++中的Transform简介

C++中Transform使用简介c++中的Transform举例如下: c++中的Transform   今天在写代码时,想把字符串数组中的大写字母全部转变为小写字母,看到有人使用Transform来进行处理,特地查阅了一些资料。记录一下:   Transform是STL中的一个函数。   Tr...

2019-04-11 20:55:11

阅读数 27

评论数 0

Pandas常用方法总结

    先开个头,明天接着写。 一、数据的读取与导出 1、数据读取 df = pd.read_csv('/home/greg/桌面/uk_rain_2014.csv', sep=',',header=0) 读取数据有三个参数,第一个是文件名,第二个是分隔符,也就是两列之间的分隔符,默认是...

2018-11-11 22:33:28

阅读数 70

评论数 0

Linux下对文件的一些操作

       今天来聊一聊linux对文件的一些操作,首先准备一个文件,里面存储一些字符串,如下图所示。        一、获得字符串在文件中所在的行 grep -n 'a b c' 1.txt 可以看出“a b c”在文件中分别为第1行和第2行。         二、输出一个...

2018-10-11 15:43:53

阅读数 95

评论数 0

边缘检测

一、Canny边缘检测        1、高斯滤波        在LOG中,也使用了高斯滤波,目的是去除图像中的噪声,因为噪声也是高频信号,很容易被认为成伪边缘。因此在进行边缘检测之前先对图像进行高斯滤波。        2、计算梯度幅值和方向        图像的边缘可以指向不同方向,...

2018-08-11 10:42:20

阅读数 1730

评论数 0

常识点滴积累

一些常识性的东西,用的时候需要查资料,比较麻烦,就在这记录一下,为了以后的方便。 1、linux下解压gz文件,gzip -d filename 把文件解压到当前文件夹 解压rar文件,rar e xxx.rar 解压至当前文件夹  rar x xxx.rar 解压...

2018-06-30 17:26:23

阅读数 1685

评论数 0

libtiff简单总结

  又用libtiff读取图片,这个包里面主要用到的就是TIFF和TIFF3D这两个包,之前用的时候在python3上总是报错,然后用python2来读取tif文件是没问题的。今天又用来读取文件,始终不能读入,报错如下:,然后又用opencv来读取文件,但是opencv根本就读不进来,查看文件大小...

2018-06-23 10:47:50

阅读数 2616

评论数 0

写文章的碎碎念

  最近在写文章,不能是最近,应该是很久以前了,提起写文章,也是个血泪史。向我这种渣渣,写个文章也是费劲,现在也只是在deadline前垂死挣扎,无奈,罢了罢了,说正事吧。一、Linux下写文章的工具  Linux下当然推荐用Texmaker,好看又好用,安装就不说了,自行google。二、关于文...

2018-05-29 20:18:24

阅读数 1807

评论数 0

PSPNet: Pyramid Scene Parsing Network

PSPNet在分割中取得了非常不错的效果。 文章地址:PSPNetRelated work在神经网络的驱动下,像场景解析和语义分割这种像素级的预测都取得了很好的效果。像素级的预测主要分为两个主线:1、multi-scale feature ensembling 多尺度特征融合。因为在深度神经网络...

2018-04-10 16:12:14

阅读数 5467

评论数 0

排序算法总结

  今天来总结一下排序算法。排序算法有多种多样,而且也是面试中常见的考察点。排序算法分别有冒泡排序、插入排序,选择排序、希尔排序、归并排序、快排以及堆排序。   首先是冒泡排序,冒泡排序原理简单,每次都是两两比较,然后把大的放在后面,一直比较,直到把前M个元素中最大的放在最后面。也就是说经过一趟...

2018-03-25 20:56:29

阅读数 1828

评论数 0

《Understanding Convolution for Semantic Segmentation》

Understanding Convolution for Semantic Segmentation Abstract   首先,我们设计了密集卷积上采样(dense upssampling convolution DUC)可以获得像素级别的上采样,DUC可以获取并解码一些细节信息,这些细...

2018-03-15 20:07:42

阅读数 2132

评论数 1

DeepLabv3:《Rethinking Atrous Convolution for Semantic Image Segmentataion》

论文地址:https://arxiv.org/abs/1706.05587 Abstract   在这篇文章中,我们重温了atrous convolution(带孔卷积),它可以很好的调整过滤器的感受野以及控制输出feature map的分辨率。为了解决分割中物体的多尺度,我们设计了带孔卷积的...

2018-03-12 17:07:42

阅读数 3976

评论数 0

《ImageNet Classification with Deep Convolutional Neural Network》

  本篇论文是在ImageNet上大放异彩,将CNN应用于cv大舞台,论文的作者是Alex Krizhevsky,来自加拿大多伦多大学Hinton组,所以论文中的模型又叫AlexNet。 概述   ImageNet数据集共有150万张图片,分为22000个类别。Image Large-Scal...

2018-03-06 22:32:10

阅读数 2358

评论数 0

机器学习实战--K近邻法

这两天再看K近邻法,K近邻法是基本的分类与回归算法.在这里总结一下,从一下几个方面.     1KNN的原理     2距离度量     3 K值的选取     4 分类规则以及Kd树 一KNN的原理     以分类为例,我们有训练样本,即训练集,每个一样本都是带有label的,即我们...

2018-01-14 14:23:43

阅读数 1751

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭