自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Silence的博客

不积跬步无以至千里

原创 Vim使用总结

vim使用总结   vim是我们经常使用的工具,一些常规的操作还是比较熟悉的,还是想把它总结下来,以备忘记时查看使用。 1、vim中删除多行(块)代码   打开文件之后,按shift+v默认进行选中块的模式,然后按向下的方向键久会继续选中下面的行,选完之后按d就可以删除这一块代码了。最后保存即可。...

2019-08-22 16:48:43 71 0

原创 Linux下对文件的一些操作

今天来聊一聊linux对文件的一些操作,首先准备一个文件,里面存储一些字符串,如下图所示。 一、获得字符串在文件中所在的行 grep -n 'a b c' 1.txt 可以看出“a b c”在文件中分别为第1行和第2行。 1、也可以使用cat获...

2018-10-11 15:43:53 616 0

原创 深度学习调参总结

2017-07-15 一、acc、val_acc停留在一个值附近,上下震荡 今天早上来到实验室 ,看了看昨天跑得结果,很好啊,acc、val_acc同步上升,基本没有甚麽偏差。心中一喜,可是acc还没有超过50%,虽然说在同步上升,但是没有任何卵用。想把程序停下来,但是看着它...

2017-07-15 10:58:14 2091 0

原创 leetcode最大收益I II III

  leetcode最大收益问题接连做了3道,难度逐渐提升,而且第三道直接没有思路,现在做完之后,需要做一个总结。 第一题 https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ 给定一个数组,每一个数代表股票每天的价格,允许...

2020-01-27 15:24:32 137 0

原创 Golang中interface{}转为数组

interface{} 转为普通类型   我们都知道在golang中interface{}可以代表任何类型,对于像int64、bool、string等这些简单类型,interface{}类型转为这些简单类型时,直接使用 p, ok := t.(bool) p, ok := t.(int64) 如...

2019-12-26 21:51:49 3913 0

原创 nohup 命令简介

  nohup命令就是不挂断的运行命令,适用于我们想让程序在后台执行,而不一直占用当前终端或者不把程序的log输出到终端中。程序放在后台运行,我们可以正常使用终端,并且程序会把日志默认输出到nohup.out文件中。   之前在服务器上跑代码,我都是直接起一个tmux,然后让程序跑起来,关掉终端代...

2019-12-07 13:39:44 59 0

原创 git使用总结

Git使用总结 1、本地更新代码前忘记拉取(pull)最新代码    本地对代码进行了修改,但是忘记拉取最新版本的代码。这时想要拉最新的代码时,git pull origin branch name,会提示你 Your local changes to the following files wo...

2019-10-12 13:12:04 66 0

原创 Matplotlib绘制不同颜色的带箭头的线

Matplotlib绘制不同颜色的箭头线   周五的时候计算出来一条线路,但是计算出来的只是类似与 0->10->19->2->..0 这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。 &esp; 当然...

2019-08-11 13:50:27 2495 0

原创 python对excel文件的操作

   python对excel文件的操作   之前处理excel的时候主要是用pandas来做,这次处理一些小型的excel数据,用的是比较轻量级的python库。主要有 xlrd、openpyxl、xlsxwriter 然后还有处理时间的datetime库。 一、创建excel文件 xlsxw...

2019-07-26 19:25:24 345 0

原创 Java从json文件中读取数据

Java从json文件中读取数据 数据准备 数据是利用python生成的一个字典x,然后使用json.dump(x, file)就可以将数据保存成json文件存储至本地。 读取数据 借助java自带的一些FIle包和阿里的JSON、JSONArray、JSONObject三个包来完成文件的读取。 ...

2019-07-09 19:41:04 4844 0

原创 Tmux使用总结--不断更新

Tmux   Tmux终端神器,主要是用于终端的复用,这样我们在使用终端的时候就不用开多个了,而是开一个终端,让终端再分成不同的部分,这样比开多个终端方便简洁。   首先说几个简单的概念,   Session:会话,相当于一个全局变量,开启一个会话之后终端就进入tmux模式下了。直接输入tmux即...

2019-07-04 23:32:45 241 0

原创 推荐算法-AFM

推荐算法-AFM   推荐算法-AFM,这篇文章也是在FM的基础上做工作。这篇文章是针对特征之间组合时,不同的特征都是用同样的向量去做。即每一个特征和其它的特征进行组合时,都是采用同一个向量,缺乏不同特征之间的关联性不同,应该采用不同的向量。解决这个问题的一个思路就是FFM,即每一个特征针对每一个...

2019-05-24 10:07:42 923 0

原创 推荐算法-NFM

推荐算法-NFM   FM对于特征的组合仅限于二阶,缺少对特征之间深层次关系的抽取。因此,NFM提出来就是在FM的基础上引入神经网络,实现对特征的深层次抽取。NFM的模型结构图如下所示:   模型的结构如上图所示,首先输入就是离散化的特征,然后再进行embedding操作,获得每一个特征的向量表...

2019-05-22 10:45:15 928 0

原创 推荐算法-PNN(Product Network)

推荐算法-PNN   这篇文章出自上海交大,针对直接把Embedding之后的特征输入到神经网络中进行计算对特征的交叉组合不充分而提出来的。也是对特征的组合做文章的一种方法。 PNN网络结构   模型结构如下图所示: 可以看出模型也是实现CTR预估任务,输入数据是对特征进行one-ho...

2019-05-17 14:54:33 3632 0

原创 推荐算法-Deep & Cross Network

推荐算法Deep & Cross Network   这篇文章是谷歌在2017年的一篇文章,是用在广告点击率预估上面的。从文章题目上来看,应该是包含两大块,Cross和Deep两个部分。原因应该很简单,还是在特征的组合上做文章。但是看完这篇文章之后,感觉很清爽,就是思路比较简单,而且实现...

2019-05-01 14:22:25 1157 1

原创 推荐算法-DeepFM

推荐算法-DeepFM 一、DeepFM出现的原因   在FM中,采用了一阶和二阶的特征组合,相比与只使用一阶线性组合效果要好很多。但是特征组合的能力还是有限的。即特征之间组合的力度,挖掘特征之间的关联性还是较差的。在图像处理的一些方法中,模型的深度都比较深经过了很多层的非线性变换,主要的目的是为...

2019-04-30 13:38:14 1041 0

原创 推荐算法-FM(Factorization Machine)

FMFM出现的原因FM的求解参考 FM出现的原因   FM是推荐系统中重要的方法,也有许多基于FM的变种。   FM的出现主要是为了解决线性模型的特征之间无法进行组合的问题。在LR模型中,特征之间都是独立存在的,无法体现特征之间的联系。比如有的女生喜欢化妆品,男生喜欢运动产品。单纯的使用w1∗x1...

2019-04-28 22:16:14 1243 0

原创 C++中的Transform简介

C++中Transform使用简介c++中的Transform举例如下: c++中的Transform   今天在写代码时,想把字符串数组中的大写字母全部转变为小写字母,看到有人使用Transform来进行处理,特地查阅了一些资料。记录一下:   Transform是STL中的一个函数。   Tr...

2019-04-11 20:55:11 229 0

原创 Pandas常用方法总结

    先开个头,明天接着写。 一、数据的读取与导出 1、数据读取 df = pd.read_csv('/home/greg/桌面/uk_rain_2014.csv', sep=',',header=0) 读取数据有三个参数,第一个是文件名,第二个...

2018-11-11 22:33:28 591 0

原创 边缘检测

一、Canny边缘检测        1、高斯滤波        在LOG中,也使用了高斯滤波,目的是去除图像中的噪声,因为噪声也是高频信号,很容易被认为成伪边缘。因此在进行边缘检测之前先对图像进行高斯滤波。        2、计算梯度幅值和方向        图像的边缘可以指向不同方向,...

2018-08-11 10:42:20 11670 0

原创 常识点滴积累

一些常识性的东西,用的时候需要查资料,比较麻烦,就在这记录一下,为了以后的方便。 4、linux下在当前目录下根据文件名查找文件: find | xargs grep tree 这样可以在当前目录以及子目录下寻找文件名中有tree关键字的文件 ll | grep tree 只能在当前...

2018-06-30 17:26:23 1787 0

原创 libtiff简单总结

  又用libtiff读取图片,这个包里面主要用到的就是TIFF和TIFF3D这两个包,之前用的时候在python3上总是报错,然后用python2来读取tif文件是没问题的。今天又用来读取文件,始终不能读入,报错如下:,然后又用opencv来读取文件,但是opencv根本就读不进来,查看文件大小...

2018-06-23 10:47:50 5131 0

原创 写文章的碎碎念

  最近在写文章,不能是最近,应该是很久以前了,提起写文章,也是个血泪史。向我这种渣渣,写个文章也是费劲,现在也只是在deadline前垂死挣扎,无奈,罢了罢了,说正事吧。一、Linux下写文章的工具  Linux下当然推荐用Texmaker,好看又好用,安装就不说了,自行google。二、关于文...

2018-05-29 20:18:24 1897 0

原创 PSPNet: Pyramid Scene Parsing Network

PSPNet在分割中取得了非常不错的效果。 文章地址:PSPNetRelated work在神经网络的驱动下,像场景解析和语义分割这种像素级的预测都取得了很好的效果。像素级的预测主要分为两个主线:1、multi-scale feature ensembling 多尺度特征融合。因为在深度神经网络...

2018-04-10 16:12:14 6865 1

原创 排序算法总结

  今天来总结一下排序算法。排序算法有多种多样,而且也是面试中常见的考察点。排序算法分别有冒泡排序、插入排序,选择排序、希尔排序、归并排序、快排以及堆排序。   首先是冒泡排序,冒泡排序原理简单,每次都是两两比较,然后把大的放在后面,一直比较,直到把前M个元素中最大的放在最后面。也就是说经过一趟...

2018-03-25 20:56:29 1865 0

原创 《Understanding Convolution for Semantic Segmentation》

Understanding Convolution for Semantic Segmentation Abstract   首先,我们设计了密集卷积上采样(dense upssampling convolution DUC)可以获得像素级别的上采样,DUC可以获取并解码一些细节信息,这些细...

2018-03-15 20:07:42 2371 0

原创 DeepLabv3:《Rethinking Atrous Convolution for Semantic Image Segmentataion》

论文地址:https://arxiv.org/abs/1706.05587 Abstract   在这篇文章中,我们重温了atrous convolution(带孔卷积),它可以很好的调整过滤器的感受野以及控制输出feature map的分辨率。为了解决分割中物体的多尺度,我们设计了带孔卷积的...

2018-03-12 17:07:42 4259 0

原创 《ImageNet Classification with Deep Convolutional Neural Network》

  本篇论文是在ImageNet上大放异彩,将CNN应用于cv大舞台,论文的作者是Alex Krizhevsky,来自加拿大多伦多大学Hinton组,所以论文中的模型又叫AlexNet。 概述   ImageNet数据集共有150万张图片,分为22000个类别。Image Large-Scal...

2018-03-06 22:32:10 2968 0

原创 机器学习实战--K近邻法

这两天再看K近邻法,K近邻法是基本的分类与回归算法.在这里总结一下,从一下几个方面.     1KNN的原理     2距离度量     3 K值的选取     4 分类规则以及Kd树 一KNN的原理     以分类为例,我们有训练样本,即训练集,每个一样本都是带有label的,即我们...

2018-01-14 14:23:43 1805 0

原创 排序算法-快排

今天聊聊排序算法,排序算法平时也会用到,有很多比如,冒泡,快排,选择,归并排序等.今天就聊一聊快速排序算法排序算法的一个宗旨就是经过一趟排序,何为一趟排序呢?就是遍历完一次数组,数组中的一部分数据比另外一部分的数据都要小.当然这两部分数据内部仍然是无序的,然后我们再对这两部分数据分别进行排序,如此...

2018-01-13 17:44:49 2101 0

原创 画pytorch模型图,以及参数计算

刚入pytorch的坑,代码还没看太懂。之前用keras用习惯了,第一次使用pytorch还有些不适应,希望广大老司机多多指教。     首先说说,我们如何可视化模型。在keras中就一句话,keras.summary(),或者plot_model(),就可以把模型展现的淋漓尽致。 但是pyt...

2018-01-12 20:38:09 14206 1

原创 《机器学习实战》--逻辑斯蒂回归<二>

梯度下降可视化前一篇看完了理论,我们来实战一下,首先看一下梯度下降的效果 先看代码# 目标函数 def func(x): return np.square(x)# 目标函数一阶导数 def dfunc(x): return 2 * xdef GD_momentum(x_start...

2017-12-02 22:41:33 1876 0

原创 《机器学习实战》-- 逻辑斯蒂回归<一>

引言  回归我们知道有线性回归,线性回归模型能够无限的逼近我们的结果。以(xi,yi)(x_{i}, y_{i})为例,通过线性回归 f(x)=wTx+bf(x)=w^{T}x+b表达式,就可以得到我们对yiy_{i}的估计值。回归到分类  如何从线性回归转换到分类呢?由于线性回归得到的是连续值,...

2017-12-02 21:47:56 2849 3

原创 极大似然估计

在学统计学习方法的时候,里面经常提到最大似然函数,但是我一直不知道他代表什么意思,或者说每次要求参数的时候,都是先根据已有的分布连乘,然后求参数就行了。这种做法让我很困扰,今天就百度了一下, 看到了各路大神的解释,心中有些谱了,就在这里简单记录一下,尽量不涉及公式。   极大似然估计就是利用已有...

2017-11-27 23:36:56 2245 0

原创 C++传参数的正确姿势

vector传递参数  前几天写一个很简单的c++程序,但是中间遇到了很有趣的问题,搞得我当时一顿懵,后来弄懂了,简单总结一下。   话说到底是什么问题呢?调用函数时,怎样引入实参才能对实参本身改变内容,有时候你想当然的调用了函数func,func运行完,发现参数并没有改变,这可如何是好?很简单...

2017-11-19 21:20:09 2001 0

原创 Generative Adversarial Nets (GAN) 阅读笔记

Generative Adversarial Nets 生成对抗网络的出现所引起的影响,不用我多说,想必大家也都知道了.我也是最近几天才看完这篇文章(汗,我这科研速度),把自己的一些理解分享给大家.一 Abstract   作者提出了一个网络结构, 该结构包含两个模型, 一个是生成模型, 另一个是...

2017-11-12 16:57:05 2055 0

原创 <机器学习实战>--朴素贝叶斯实战(二)

一 前言  上一篇文章介绍了朴素贝叶斯的基本原理, 现在就来实践一下吧, 阅读了部分<机器学习实战>上的代码, 自己也敲了一遍, 做了一下验证, 现在就在这里分享一下.   环境:   Ubuntu 16.04   Python 3.5.2  二 使用朴素贝叶斯进行文档分类2....

2017-10-15 15:50:19 2218 0

原创 <机器学习实战>--朴素贝叶斯(一)

一 简介 朴素贝叶斯是基于概率论的一种分类方法,或者说是基于贝叶斯定理与特征条件独立假设的分类方法.该方法是用于分类问题,现实生活中用于病人的诊断,不当言论的分类等.由于其实现方法简单,计算效率高,所以应用还是比较广泛的.   二 概率模型 朴素贝叶斯就是一个概率模型, 再分类的过程中, 我...

2017-10-14 20:06:05 1924 0

原创 海康笔试题--字符串分割

一、题目要求是对输入的字符串以及分隔符按照分隔符来分割,当时是在替别人做题,由于误导以及时间的紧迫并没有完全读懂题。 题目给的样例是: 输入:abc,sjd,sdjhsj,sjfas,sjhd, , 输出:abc sjd sdjhsj ...

2017-10-11 22:01:57 2443 2

原创 数据结构-链表总结

最近在学习链表,先做一下简单的总结: 一、链表的结构 二、链表常见的笔试题 合并两个排序好的链表 两个排序链表的交叉节点(后面详细介绍) 两个链表相加–最高位在头节点 两个链表相加–最高位在尾节点 判断链表是否为回文结构 待续……… 一、链表的结构   首先介绍一下链表的结构,链表是由节点组...

2017-09-10 17:22:45 1732 0

提示
确定要删除当前文章?
取消 删除