PigyChan_LeetCode 931. 下降路径最小和

本文探讨了如何通过计算二维数组A中的最小下降路径和来解决中等难度问题。通过动态规划方法,求解从第一行起,每次向下移动一格或两格的路径中,和最小的路径。实例和代码展示了如何使用递推公式dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i-1][j+1]) + A[i][j]。
摘要由CSDN通过智能技术生成

931. 下降路径最小和

难度中等

给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和。
下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列。

示例:

输入:[[1,2,3],[4,5,6],[7,8,9]]
输出:12
解释:
可能的下降路径有:
*
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
*
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
*
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]

和最小的下降路径是 [1,4,7],所以答案是 12。

提示:
1.
1 <= A.length == A[0].length <= 100
2.
-100 <= A[i][j] <= 100

思路1.0:

(1)设置dp[n][m]为到达arr[n][m]下降路径的最小和。
(2)dp[n][m]=min(dp[n-1][m-1],dp[n-1][m],dp[n-1][m+1])+arr[n][m];
(3)将数组设为row=n+1,col=n+2

代码1.0:
class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& A) {
        int row = A.size(), col = A[0].size();
        vector<vector<int>> dp(row + 1, vector<int>(col + 2, INT_MAX));
        for (int j = 1; j <= col; ++j)
            dp[1][j] = A[0][j - 1];
        for (int i = 2; i <= row; ++i)
        {
            for (int j = 1; j <= col; ++j)
            {
                dp[i][j] = A[i - 1][j - 1] + min(dp[i - 1][j - 1], min(dp[i - 1][j],  dp[i - 1][j + 1]));
            }
        }
        int rst = INT_MAX;
        for (int j = 1; j <= col; ++j) rst = min(rst, dp[row][j]);
        return rst;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值