931. 下降路径最小和
难度中等
给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和。
下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列。
示例:
输入:[[1,2,3],[4,5,6],[7,8,9]]
输出:12
解释:
可能的下降路径有:
*
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
*
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
*
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
和最小的下降路径是 [1,4,7],所以答案是 12。
提示:
1.
1 <= A.length == A[0].length <= 100
2.
-100 <= A[i][j] <= 100
思路1.0:
(1)设置dp[n][m]为到达arr[n][m]下降路径的最小和。
(2)dp[n][m]=min(dp[n-1][m-1],dp[n-1][m],dp[n-1][m+1])+arr[n][m];
(3)将数组设为row=n+1,col=n+2
代码1.0:
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& A) {
int row = A.size(), col = A[0].size();
vector<vector<int>> dp(row + 1, vector<int>(col + 2, INT_MAX));
for (int j = 1; j <= col; ++j)
dp[1][j] = A[0][j - 1];
for (int i = 2; i <= row; ++i)
{
for (int j = 1; j <= col; ++j)
{
dp[i][j] = A[i - 1][j - 1] + min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1]));
}
}
int rst = INT_MAX;
for (int j = 1; j <= col; ++j) rst = min(rst, dp[row][j]);
return rst;
}
};