275. H 指数 II
难度中等
给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照 升序排列 。编写一个方法,计算出研究者的 h 指数。
h 指数的定义: “h 代表“高引用次数”(high citations),一名科研人员的 h 指数是指他(她)的 (N 篇论文中)总共有 h 篇论文分别被引用了至少 h 次。(其余的 N - h 篇论文每篇被引用次数不多于 h 次。)"
示例:
输入: citations = [0,1,3,5,6]输出: 3
解释: 给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 0, 1, 3, 5, 6 次。
由于研究者有 3 篇论文每篇至少被引用了 3 次,其余两篇论文每篇被引用不多于 3 次,所以她的 h 指数是 3。
说明:
如果 h 有多有种可能的值 ,h 指数是其中最大的那个。
进阶:
(1)这是 H 指数 的延伸题目,本题中的 citations 数组是保证有序的。
(2)你可以优化你的算法到对数时间复杂度吗?
#### 思路1.0:
(1)二分查找的左右边界变换条件
1)citations[mid] == len-mid,return citations[mid]
2)citations[mid] < len-mid,left=mid+1;
3)citations[mid] > len-mid,访问citations[mid-1],如果小于right-mid+1,return right-mid+1;如果不小于,len-mid;
代码1.0:
class Solution {
public:
int hIndex(vector<int>& citations) {
if (citations.empty()) return 0;
int len = citations.size();
int right = len - 1;
int left = 0;
while (left <= right) {
int mid = (right + left) / 2;
int num = len - mid;
if (citations[mid] == num)
return citations[mid];
else if (citations[mid] < num)
left = mid + 1;
else if (citations[mid] > num) {
if (mid - 1 >= 0) {
if (citations[mid - 1] <= num)
return num;
else
right = mid - 1;
}
else {
return num;
}
}
}
return 0;
}
};
尝试再优化一下
优化过程中发现,创建临时变量存储一处运算结果,对整体效率并没有太大的提升,反而可能会降低效率。(只有可阅读性提升了)
代码2.0:
class Solution {
public:
int hIndex(vector<int>& citations) {
if (citations.empty()) return 0;
int len = citations.size();
int right = len - 1;
int left = 0;
while (left <= right) {
int mid = (right + left) / 2;
if (citations[mid] == len - mid)
return citations[mid];
else if (citations[mid] < len - mid)
left = mid + 1;
else if (citations[mid] > len - mid) {
if (mid - 1 >= 0) {
if (citations[mid - 1] <= len - mid)
return len - mid;
else
right = mid - 1;
}
else {
return len - mid;
}
}
}
return 0;
}
};