PigyChan_LeetCode 1306. 跳跃游戏 III

1306. 跳跃游戏 III

难度中等

这里有一个非负整数数组 arr,你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时,你可以跳到 i + arr[i] 或者 i - arr[i]。
请你判断自己是否能够跳到对应元素值为 0 的 任一 下标处。
注意,不管是什么情况下,你都无法跳到数组之外。

示例 1:

输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 5 -> 下标 4 -> 下标 1 -> 下标 3
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3
示例 2:

输入:arr = [4,2,3,0,3,1,2], start = 0
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 0 -> 下标 4 -> 下标 1 -> 下标 3
示例 3:

输入:arr = [3,0,2,1,2], start = 2
输出:false
解释:无法到达值为 0 的下标 1 处。

提示:
* 1 <= arr.length <= 5 * 10^4
* 0 <= arr[i] < arr.length
* 0 <= start < arr.length

思路1.0:

深度优先遍历就完事儿了!在写代码的过程中发现需要添加一个机制来即使判断能否跳到目标下标,不然会一直递归下去,就把遍历过的都变成-1吧!

代码1.0:

class Solution {
public:
    int g_len;
    bool g_ans = false;


    void DFS(int index, vector<int>& arr) {
        if (index < g_len && index >= 0 && g_ans == false) {
            int val = arr[index];
            if (val == -1) return;
            if (val == 0) g_ans = true;
            arr[index] = -1;


            DFS(index + val, arr);
            DFS(index - val, arr);
        }
    }
    
    bool canReach(vector<int>& arr, int start) {
        g_len = arr.size();


        DFS(start, arr);
        return g_ans;
    }
};


在这里插入图片描述

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页