利用DFS判断有向图是否有环。
思路过程:利用DFS可以实现深度搜索,即实现以某一结点为开始按照有向图找有向链,在搜索过程中,可以认为所有的链上的结点依次放入栈中如果搜索到最后栈中的数字没有重复,说明这条链没有环可以依次弹出工作栈。如果搜索的某一个结点的下一节点在栈中出现过,也就是可以判断形成了链。利用标记实现栈的功能,color[i]=0,表示i结点没有访问过,color[i]=1,表示i结点压入栈中,color[i]=2,表示i结点弹出栈中。
则搜索以1为开始结点的链时,搜索栈中是1,2,4,由于4没有后继结点,所有这条链搜索完毕,没有重复的,所有这条链没有环,回溯即一一弹栈。同理搜索1,3,4也是没有环。
这时候从1开始的时候,链为1,2,3,但是3还有后继节点1,但是1,此时已经在栈中,就是在正在搜素的链中,会形成环。
using namespace std;
const int N = 105;
vector< vector<int> > g(N);
bool isCyclicUtil(int v, int color[])
{
color[v] = 0;
for(int i = 0;i < g[v].size();++ i)
{
if (color[g[v][i]] == 0)
return true;
if (color[g[v][i]] == -1 && isCyclicUtil(g[v][i],color))
return true;
}
color[v] = 1;
return false;
}
bool isCyclic(int n)
{
//白色-1 表示未访问过
//灰色0 表示正在访问,也就是当前点在DFS遍历树中
//黑色1 表示已经访问过了
int color[n];
for(int i = 0;i < n;++ i)
color[i] = -1;
for(int i = 0;i < n;++ i)
{
if (color[i] == -1)
{
if (isCyclicUtil(i, color))
return true;
}
}
return false;
}
int main()
{
int n,m;
cin >> n >> m;
for(int i = 0;i < m;++ i)
{
int from, to;
cin >> from >> to;
g[from].push_back(to);
}
cout << (isCyclic(n) ? "yes" : "no");
return 0;
}
/*
input
output
*/