图论(一)最短路径(邻接矩阵表示,dijkstra算法求最短路径)

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=1e3+10;
const int inf = 0x3f3f3f3f;
int Map[maxn][maxn],dis[maxn];
int visit[maxn];
int n,m;
void init(){       //邻接矩阵表示,由于图的顶点最多有100个,所以
  for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
  {
      if(i==j)
            Map[i][j]=0;
      else
            Map[i][j]=inf;

  }
}
void dijkstra(){         
    for(int i=1;i<=n;i++)
        dis[i]=Map[1][i];//初始化距离数组
    memset(visit,0,sizeof(visit));//标记是否被询问
    int s=0;
    visit[1]=1;
    for(int i=1;i<n;i++){
        int Min=inf;
        for(int j=1;j<=n;j++)//寻找当前最小值,即最短距离
        {
           if(Min>dis[j]&&visit[j]==0)
           {
               Min=dis[j];
               s=j;
           }

        }
        visit[s]=1;       //将找到的点标记一下表示已找到1到s的距离最小
        for(int j=1;j<=n;j++){
            if(visit[j]==0&&dis[j]>dis[s]+Map[s][j])//更新数组。判断直接到该点还是从上面求到的最小的点到该点那个小
                dis[j]=dis[s]+Map[s][j];
           }
    }
    printf("%d\n",dis[n]);
}
int main(){
  while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
        init();
    for(int i=1;i<=m;i++){
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        
            Map[u][v]=w;
            Map[v][u]=w;
        
    }
    dijkstra();
  }
 return 0;
}

acm.hdu.edu.cn/showproblem.php?pid=2544

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
 

Input

输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。

Output

对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间

Sample Input

 

2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0

Sample Output

 

3 2

Source

UESTC 6th Programming Contest Online

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

初,梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值