感想:有序数组的搜索问题优先考虑二分法
03. 数组中重复的数字
难度:简单
找出数组中重复的数字。
在一个长度为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。
看到不重复,想到HashSet,利用hashset元素不重复的特性,找出重复数字,但其实用Map也是一样。
class Solution {
public int findRepeatNumber(int[] nums) {
Set<Integer> hashSet = new HashSet<>();
for(int c:nums){
if(hashSet.contains(c)){
return c;
}else {
hashSet.add(c);
}
}
return 0;
}
}
执行效率不高,但回过头想,可以将数组中的数看成一个个下标,利用新数组对应下标中存放的数来确定数字是否重复。
class Solution {
public int findRepeatNumber(int[] nums) {
int[] map = new int[nums.length];
for(int n:nums){
if(map[n]==0){
map[n] = -1;
}else{
return n;
}
}
return 0;
}
}
53 - I. 在排序数组中查找数字 I
难度:简单
统计一个数字在排序数组中出现的次数。
嗯…看到这个题直接用Map重拳出击了,看了看评论区原来考的是二分法…
Map写法过是过了,但时间效率很慢。优化后的Map写法也在其中。
class Solution {
public int search(int[] nums, int target) {
Map<Integer,Integer> map = new HashMap<>();
map.put(target,0);
for(int n : nums){
if(!map.containsKey(n)){
map.put(n,1);
}else{
map.put(n,map.get(n)+1);
}
}
return map.get(target)==0?0:map.get(target);
}
}
//优化的Map
class Solution {
public int search(int[] nums, int target) {
Map<Integer,Integer> map = new HashMap<>();
for(int n : nums){
if(n == target){
map.put(target,map.getOrDefault(target,0)+1);
}
}
return map.getOrDefault(target,0);
}
}
我写出的二分法是,从两边分别找,找到target之后,再从mid出发,向前向后,在[low , mid],[mid , high]之间寻找有多少个target。因为数组有序,所以target必在这两个区间之内。(再想想就和大佬两次二分思路差不多了!!!)
class Solution {
public int search(int[] nums, int target) {
int low = 0, high = nums.length-1;
while(low <= high){
int mid = low+(high-low)/2;
if(nums[mid] > target){
high = mid-1;
}else if(nums[mid] < target){
low = mid + 1;
}else{
int count = 1;
int temp = mid - 1;
while(temp >= low && nums[temp] == target) {
count++;
temp--;
}
temp = mid + 1;
while (temp <= high && nums[temp] == target) {
count++;
temp++;
}
return count;
}
}
return 0;
}
}
看了评论区,有大佬用了两次二分找到区间,直接计算得出个数。
53 - II. 0~n-1中缺失的数字
难度:简单
一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个数字都在范围0~n-1之内。在范围0~n-1内的n个数字中有且只有一个数字不在该数组中,请找出这个数字。
我…又创建了个数组,按下标写的…其实根本不用创建新数组,只需要比较下标与当前数字是否相同…其实考的又是二分…
class Solution {
public int missingNumber(int[] nums) {
int n = nums.length;
int[] number = new int[n+1];
for(int c:nums){
number[c] = 1;
}
for(int i = 0;i < n+1;i++){
if(number[i]==0){
return i;
}
}
return 0;
}
}
//不创建新数组
class Solution {
public int missingNumber(int[] nums) {
if(nums[0] != 0) return 0;
for(int i = 0;i < nums.length;i++){
if(nums[i]!=i){
return i;
}
}
return nums.length;
}
}
//二分
class Solution {
public int missingNumber(int[] nums) {
int n = nums.length;
int low = 0, high = n - 1;
while(low <= high){
int mid = (low + high) / 2;
if(nums[mid] == mid){
low = mid + 1;
}else {
high = mid - 1;
}
}
return low;
}
}
还有更秀的,等差数组求和再减出差值。
class Solution {
public int missingNumber(int[] nums) {
int n = nums.length;
int sum = (n+1)*n/2;
for(int c:nums){
sum -= c;
}
return sum;
}
}