Elasticsearch从入门到精通-04ES简单语法
👏作者简介:大家好,我是程序员行走的鱼
📖 本篇主要介绍和大家一块学习一下ES部分高级语法DSL
Elasticsearch
提供了基于 JSON
提供完整的查询 DSL
来定义查询,接下来就基于我们关系型数据类比关系看看Elasticsearch
是如何进行高级查询的
在进行高级查询之前,我们先创建索引指定分词器为ik分词器
PUT /es_db
{
"settings": {
"index": {
"analysis.analyzer.default.type": "ik_max_word"
}
}
}
1.1 无条件查询
无查询条件是查询所有,默认是查询所有的,或者使用match_all表示所有
语法:
GET es_db/_doc/_search
示例:
1.2 匹配查询
匹配查询主要是针对文本类型的字段,文本类型的字段在建立索引的时候会对内容进行分词,当查询时,也会对搜索条件进行分词,然后通过倒排索引查找到匹配的数据
match:
通过match关键词匹配条件内容prefix :
前缀匹配regexp :
通过正则表达式来匹配数据wildcard:
通过通配符来匹配数据
match匹配:
GET es_db/_doc/_search
{
"query":{
"match":{
"name" : "三"
}
}
}
前缀匹配:
GET es_db/_doc/_search
{
"query":{
"prefix": {
"name.keyword": {
"value": "张"
}
}
}
}
正则匹配:
GET es_db/_doc/_search
{
"query": {
"regexp": {
"name": ".*op[A-z]{0,1}"
}
}
}
通配符匹配:
GET es_db/_doc/_search
{
"query": {
"wildcard": {
"name": {
"value": "张*"
}
}
}
}
前缀匹配搜索, 正则表达式匹配搜索, 通配符匹配搜索等等,但是这种模糊匹配都不建议在生产中使用,因为都需要扫描整个doc的索引,所以效率很低,所以不建议生产中使用
match条件还支持以下参数:
-
query :
指定匹配的值 -
operator :
匹配条件类型 -
and :
条件分词后都要匹配 -
or :
条件分词后有一个匹配即可(默认) -
minmum_should_match :
指定最小匹配的数量
示例:
1.表示name中必须包含张和a
GET es_db/_doc/_search
{
"query": {
"match": {
"name": {
"query": "张 a",
"operator": "and"
}
}
}
}
2.表示name中包含张或者a
GET es_db/_doc/_search
{
"query": {
"match": {
"name": {
"query": "张 a",
"operator": "or"
}
}
}
}
3.至少匹配一个词,minimum_should_match可以跟百分比或者整数
GET es_db/_doc/_search
{
"query": {
"match": {
"name": {
"query": "张 a",
"minimum_should_match": 1
}
}
}
}
GET es_db/_doc/_search
{
"query": {
"match": {
"name": {
"query": "张 a",
"minimum_should_match": "50%"
}
}
}
}
1.3 单字段精确匹配
term查询:
精确的关键词匹配查询,不会对查询条件进行分词。
示例:
GET /es_db/_search
{
"query": {
"term": {
"name": {
"value": "李四"
}
}
}
}
1.4 多字段精确匹配
terms 查询
和 term 查询
一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件,类似于 mysql
的in
的用法。
1.5 match_phase
match_phase:
会对输入做分词,但是需要结果中也包含所有的分词,而且顺序要求一样。以"hello world"为例,要求结果中必须包含hello和world,而且还要求他们是连着的,顺序也是固定的,hello that word不满足,world hello也不满足条件。
示例:
GET /es_db/_search
{
"query": {
"match_phrase": {
"remark": "java assistant"
}
}
}
1.6 query_string
query_string:
和match类似,但是match需要指定字段名,query_string是在所有字段中搜索,范围更广泛。
示例:
1.4 指定字段查询
默认情况下,Elasticsearch
在搜索的结果中,会把文档中保存在_source
的所有字段都返回。如果我们只想获取其中的部分字段,我们可以添加_source
的过滤
示例一:
示例二:
使用includes表示包含哪些字段,使用excludes表示排除哪些字段
1.5 组合查询
组合条件查询是将叶子条件查询语句进行组合而形成的一个完整的查询条件
-
bool
: 各条件之间有and,or或not的关系must :
各个条件都必须满足,即各条件是and的关系should :
各个条件有一个满足即可,即各条件是or的关系must_not :
不满足所有条件,即各条件是not的 关系filter :
不计算相关度评分,它不计算_score 即相关度评分,效率更高
-
constant_score : 不计算相关度评分
-
must/filter/shoud/must_not 等的子条件是通过 term/terms/range/ids/exists/match 等叶子条件为参数的
注:以上参数,当只有一个搜索条件时,must等对应的是一个对象,当是多个条件时,对应的是一个数组
示例:
GET /es_db/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "张三"
}
}
],
"should": [
{
"match": {
"name": "李四"
}
}
]
}
}
}
1.6 范围查询
range查询:
找出那些落在指定区间内的数字或者时间,range 查询允许以下字符
操作符 | 说明 |
---|---|
gt | 大于> |
gte | 大于等于>= |
lt | 小于< |
lte | 小于等于<= |
示例:
GET /es_db/_search
{
"query": {
"range": {
"age": {
"gte": 10,
"lte": 40
}
}
}
}
1.6 模糊查询
返回包含与搜索字词相似的字词的文档。
编辑距离是将一个术语转换为另一个术语所需的一个字符更改的次数。这些更改可以包括:
- 更改字符(box → fox)
- 删除字符(black → lack)
- 插入字符(sic → sick)
- 转置两个相邻字符(act → cat)
为了找到相似的术语,fuzzy 查询会在指定的编辑距离内创建一组搜索词的所有可能的变体或扩展。然后查询返回每个扩展的完全匹配。
通过 fuzziness 修改编辑距离。一般使用默认值 AUTO,根据术语的长度生成编辑距离。
示例:
GET /es_db/_search
{
"query": {
"fuzzy": {
"remark": {
"value": "ja",
"fuzziness": 2
}
}
}
}
1.7 单字段排序
sort排序:
可以让我们按照不同的字段进行排序,并且通过 order
指定排序的方式,desc
降序,asc
升序。
示例:
1.8 多个字段排序
假定我们想要结合使用 age 和 _score 进行查询,并且匹配的结果首先按照年龄排序,然后按照相关性得分排序。
示例:
GET /es_db/_search
{
"sort": [
{
"age": {
"order": "desc"
}
},
{
"_score": {
"order": "desc"
}
}
]
}
1.9 高亮查询
在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮。
Elasticsearch
可以对查询内容中的关键字部分,进行标签
和样式(高亮)
的设置。
在使用 match 查询的同时,加上一个 highlight 属性:
pre_tags
:前置标签post_tags
:后置标签fields
:需要高亮的字段remark
:这里声明remark 字段需要高亮,后面可以为这个字段设置特有配置,也可以空
示例:
GET /es_db/_search
{
"query": {
"match": {
"remark": "java"
}
},
"highlight": {
"pre_tags": "<font color='red'>",
"post_tags": "</font>",
"fields": {
"remark": {}
}
}
}
1.10 分页查询
from:
当前页的起始索引,默认从 0 开始。 from = (pageNum - 1) * size
size:
每页显示多少条
示例:
GET /es_db/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"age": {
"order": "desc"
}
}
],
"from": 0,
"size": 1
}
DSL查询语言
中存在两种:查询DSL(query DSL)
和过滤DSL(filter DSL)
query DSL
在查询上下文中,查询会回答这个问题——“这个文档匹不匹配这个查询,它的相关度高么?” 如何验证匹配很好理解,如何计算相关度呢?ES中索引的数据都会存储一个 _score分值,分值越高就代表越匹配。另外关于某个搜索的分值计算还是很复杂的,因此也需要一定的时间。
filter DSL
在过滤器上下文中,查询会回答这个问题——“这个文档匹不匹配?” 答案很简单,是或者不是。它不会去计算任何分值,也不会关心返回的排序问题,因此效率会高一点。 过滤上下文是在使用filter参数时候的执行环境,比如在bool
查询中使用 must_not
或者filter
另外,经常使用过滤器,ES会自动的缓存过滤器的内容,这对于查询来说,会提高很多性能。
POST /es_db/_doc/_search
{
"query": {
"bool": {
"filter": {
"term": {
"age": 25
}
}
}
}
}
这个查询,它的相关度高么?” 如何验证匹配很好理解,如何计算相关度呢?ES中索引的数据都会存储一个 _score分值,分值越高就代表越匹配。另外关于某个搜索的分值计算还是很复杂的,因此也需要一定的时间。
filter DSL
在过滤器上下文中,查询会回答这个问题——“这个文档匹不匹配?” 答案很简单,是或者不是。它不会去计算任何分值,也不会关心返回的排序问题,因此效率会高一点。 过滤上下文是在使用filter参数时候的执行环境,比如在bool
查询中使用 must_not
或者filter
另外,经常使用过滤器,ES会自动的缓存过滤器的内容,这对于查询来说,会提高很多性能。
POST /es_db/_doc/_search
{
"query": {
"bool": {
"filter": {
"term": {
"age": 25
}
}
}
}
}
🌟至此本篇就结束了,下一篇将介绍ES其他高级语法,比如高亮查询、聚合统计分析等