高精度算法
最近开始学习解决大数问题,在这里记录下自己的学习情况。
- 1.高精度加法
最经典的问题就是1002 A + B Problem II
问题描述
我有一个非常简单的问题。给定两个整数A和B,你的工作是计算A + B的和。
输入
输入的第一行包含整数T(1 <= T <= 20),表示测试用例的数量。然后是T行,每行包含两个正整数,A和B.请注意,整数非常大,这意味着您不应该使用32位整数来处理它们。您可以假设每个整数的长度不超过1000。
输出
对于每个测试用例,您应输出两行。第一行是“Case#:”,#表示测试用例的编号。第二行是方程“A + B = Sum”,Sum表示A + B的结果。注意方程中有一些空格。在两个测试用例之间输出一个空行。
样本输入
2
1 2
112233445566778899 998877665544332211
样本输出
情况1:
1 + 2 = 3
案例2:
112233445566778899 + 998877665544332211 = 1111111111111111110
代码如下:
#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
const int MAX=1000005;
int c[MAX],num;
void Plus(string A,string B){
int array_a[MAX],array_b[MAX];
int lena=A.size(),lenb=B.size();
num=max(lena,lenb)+1;
for(int i=0;i<lena;i++)
array_a[i]=A[lena-i-1]-'0';
for(int i=0;i<lenb;i++)
array_b[i]=B[lenb-i-1]-'0';
c[0]=0; //这行很重要
for(int i=0;i<num;i++){
if(i<lena)
c[i]+=array_a[i];
if(i<lenb)
c[i]+=array_b[i];
c[i+1]=c[i]/10; //进位
c[i]%=10;
}
while(!c[num]&&num>=1)num--; //去除前导零
}
int main()
{
``````
return 0;
}
其他模板
string Plus(string str1,string str2){
string str;
int len1=str1.size(),len2=str2.size();
if(len1<len2){
for(int i=1;i<=len2-len1;i++){
str1="0"+str1;
}
}
else{
for(int i=1;i<=len2-len1;i++){
str2="0"+str2;
}
}
len1=str1.size();
int num=0;
int t;
for(int i=len1-1;i>=0;i--){
t=str1[i]-'0'+str2[i]-'0'+num;
num=t/10;//进位
t%=10;
str=char(t+'0')+str;
}
if(num=0)
str=char(num+'0')+str;
return str;
}
- 2.高精度减法
同样时先放题 P2142 高精度减法
代码如下:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<string>
using namespace std;
int c[10000005];
int array_a[10000005],array_b[10000005];
int num;
void Minus(string A,string B){
int lena=A.size(),lenb=B.size();
for(int i=0;i<lena;i++)
array_a[i]=A[lena-i-1]-'0';
for(int i=0;i<lenb;i++)
array_b[i]=B[lenb-i-1]-'0';
num=0;
int g=0;
for(int i=0;i<max(lena,lenb);i++){
int place=array_a[i]-g;
if(i<lenb)
place-=array_b[i];
if(place>=0)
g=0;
else{
g=1;
place+=10;
}
c[num++]=place;
}
while(!c[num]&&num>=1)num--;
}
int main(){
string a,b;
cin>>a>>b;
if(a.size()<b.size()||(a.size()==b.size()&&a.compare(b)<0)){
swap(a,b);
cout<<"-";
}
Minus(a,b);
for(int i=num;i>=0;i--)
cout<<c[i];
cout<<endl;
return 0;
}
- 1.高精度乘法
先放代码吧,后面有时间再补补
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
int c[10005];
int array_a[10005],array_b[10005];
int num;
void cheng(string A,string B)
{
int lena=A.size(),lenb=B.size();
for(int i=0;i<lena;i++)
array_a[i]=A[lena-i-1]-'0';
for(int i=0;i<lenb;i++)
array_b[i]=B[lenb-i-1]-'0';
c[0]=0;
for(int i=0;i<lena;i++)
{
int k=i;
for(int j=0;j<lenb;j++)
{
int place=array_a[i]*array_b[j]+c[k];
c[k+1]+=place/10;
c[k]=place%10;
k++;
}
}
num=k;
while(!c[num]&&num>=1)num--;
}
int main()
{
string A,B;
cin>>A>>B;
cheng(A,B);
for(int i=num;i>=0;i--)
cout<<c[i];
cout<<endl;
return 0;
}
- 1.高精度除法(高精度 ➗ 低精度)
话不多说,先放代码
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;
int a[210],c[210];
int B1;
int r;//r=各项数+前一项余数
int num;
void chu(string A,int B){
int sa=A.size();
num=sa;
for(int i=0;i<sa;i++)
a[i]=A[sa-i-1]-'0';
r=0;
for(int i=sa-1;i>=0;i--){
r=r*10+a[i];
c[i]=r/B;
r%=B;
}
while(!c[num]&&num>=1)num--;
}
int main(){
string A1;
cin>>A1;
chu(A1,B1);
for(int i=num;i>=0;i--)
cout<<c[i];
cout<<endl;
cout<<r<<endl;
return 0;
}
慢 慢 填 坑 ing