redis实现分布式锁
一、业务场景介绍
在Java中,关于锁我想大家都很熟悉。在并发编程中,我们通过锁,来避免由于竞争而造成的数据不一致问题,例如抢购。
private static final int TIMEOUT= 10*1000;
@Transactional
public void orderProductMockDiffUser(String productId){
//1.查库存
int stockNum = stock.get(productId);
if(stocknum == 0){
throw new SellException(ProductStatusEnum.STOCK_EMPTY);
//这里抛出的异常要是运行时异常,否则无法进行数据回滚,这也是spring中比较基础的
}else{
//2.下单
orders.put(KeyUtil.genUniqueKey(),productId);//生成随机用户id模拟高并发
sotckNum = stockNum-1;
//模拟业务处理
try{
Thread.sleep(100);
} catch (InterruptedExcption e){
e.printStackTrace();
}
stock.put(productId,stockNum);
}
}
但是在高并发
的情况下每次都去数据库查询显然是不合适的,因此把库存信息存入Redis中。
这里有一种比较简单的解决方案,就是synchronized
关键字。
public synchronized void orderProductMockDiffUser(String productId)
这就是java自带的一种锁机制,简单的对函数加锁和释放锁。但问题是这个实在是太慢了,感兴趣的可以可以写个接口用apache ab压测一下。
ab -n 500 -c 100 http://localhost:8080/xxxxxxx
二、redis分布式锁的解决方法
首先要了解两个redis指令,SETNX 和 GETSET,可以在redis中文网上找到详细的介绍。
SETNX就是set if not exist的缩写,如果不存在就返回保存value并返回1,如果存在就返回0。
GETSET其实就是两个指令GET和SET,首先会GET到当前key的值(旧值)并返回,然后在设置当前Key为要设置Value。
新建一个redislock工具类来实现加锁和解锁:
package com.service;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
/**
* redis实现分布式锁
* @author Mango
*/
@Component
@Slf4j
public class RedisLock {
@Autowired
private StringRedisTemplate redisTemplate;
/**
* 加锁,并且只会是其中一个线程拿到锁
* @param key
* @param value 当前时间 + 超时时间
* @return
*/
public boolean lock(String key, String value) {
if (redisTemplate.opsForValue().setIfAbsent(key, value)) {
return true;
}
String currentValue = redisTemplate.opsForValue().get(key);
//如果锁过期
if (!StringUtils.isEmpty(currentValue)
&& Long.parseLong(currentValue) < System.currentTimeMillis()) {
//获取上一个锁时间
String oldValue = redisTemplate.opsForValue().getAndSet(key,value);
if (!StringUtils.isEmpty(oldValue)
&& oldValue.equals(currentValue)) {
return true;
}
}
return false;
}
/**
* 解锁
* @param key
* @param value
*/
public void unlock(String key, String value) {
try {
String currentValue = redisTemplate.opsForValue().get(key);
if (!StringUtils.isEmpty(currentValue)
&& currentValue.equals(value)) {
redisTemplate.opsForValue().getOperations().delete(key);
}
} catch (Exception e) {
log.error("[redis分布式锁] 解锁异常 {}",e);
}
}
}
该类只有两个功能,加锁和解锁,解锁比较简单,就是删除当前key的键值对。我们主要来说一说加锁这个功能。
三、代码分析
锁的value值是当前时间加上过期时间的时间戳,之后要转成Long类型来比较早晚。
首先看到用setiFAbsent方法也就是对应的SETNX,在没有线程获得锁的情况下可以直接拿到锁,并返回true也就是加锁,最后没有获得锁的线程会返回false。
然后当秒杀方法发生异常的时候,后续的线程都无法得到锁,也就陷入了一个死锁的情况。所以我们中间对于锁超时的处理。
如果没有这段代码,我们可以假设CurrentValue为A,并且在执行过程中抛出了异常,这时进入了两个value为B的线程来争夺这个锁,也就是走到了注释处currentValue=A,这时某一个线程执行到了getAndSet(key,value)函数(某一时刻一定只有一个线程执行这个方法,其他要等待)。这时oldvalue也就是之前的value等于A,在方法执行过后,oldvalue会被设置为当前的value也就是B。这时继续执行,由于oldValue=currentValue所以该线程获取到锁。而另一个线程获取的oldvalue是B,而currentValue是A,所以他就获取不到锁啦。
接下来就是在业务代码中加锁啦:首要要@Autowired注入刚刚RedisLock类,不要忘记对这个类加一个@Component
注解否则无法注入
//过期时间
private static final int TIMEOUT= 10*1000;
@Transactional
public void orderProductMockDiffUser(String productId){
long time = System.currentTimeMillions()+TIMEOUT;
if(!redislock.lock(productId,String.valueOf(time)){
//没有获得锁
throw new SellException(101,"换个姿势再试试")
}
//1.查库存
int stockNum = stock.get(productId);
if(stocknum == 0){
throw new SellException(ProductStatusEnum.STOCK_EMPTY);
//这里抛出的异常要是运行时异常,否则无法进行数据回滚,这也是spring中比较基础的
}else{
//2.下单
orders.put(KeyUtil.genUniqueKey(),productId);//生成随机用户id模拟高并发
sotckNum = stockNum-1;
try{
Thread.sleep(100);
} catch (InterruptedExcption e){
e.printStackTrace();
}
stock.put(productId,stockNum);
}
//解锁
redisLock.unlock(productId,String.valueOf(time));
}
再用apache ab压测一下。
ab -n 500 -c 100 http://localhost:8080/xxxxxxx
比synchronized快了不知道多少倍!