1.汉诺塔问题:在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
一个盘子:A--->C 一次
两个盘子:A--->B A--->C B--->C 三次
三个盘子:A--->C A--->B C--->B A--->C B--->A B--->C A--->C 七次 2^n-1
#include<stdio.h>
#include<stdlib.h>
void Move(char pos1, char pos2)
{
printf("%c--->%c\n", pos1, pos2);
}
void Hanoi(int n, char pos1, char pos2, char pos3)
{
if (n == 1){
Move(pos1, pos3);
}
else{
Hanoi(n - 1, pos1, pos3, pos2);
Move(pos1, pos3);
Hanoi(n - 1, pos2, pos1, pos3);
}
}
int main()
{
Hanoi(3, 'A', 'B', 'C');
system("pause");
return 0;
}
2.青蛙跳台阶问题:一只青蛙一次可以跳上1个台阶,也可以跳上2个台阶。问该青蛙跳上一个n级台阶总共有多少种跳法。
首先考虑最简单的情况,如果只有一个台阶,那只有一种跳法,如果有两个台阶,就会有两个跳法,一次跳一阶,一次跳两阶。
如果把n个台阶看成n的函数f(n),当n>2时,第一次跳的时候有两种选择,
假如跳一个台阶,那么就是后面的n-1个台阶数,
假如第一次跳两个台阶,那么就是后面的n-2个台阶数,
根据排列组合里的加法原理,那么会有f(n)=f(n-1)+f(n-2). 由此可以看出这其实就是斐波那契数列。
#include<stdio.h>
#include<stdlib.h>
int Step(int n)
{
if ( n < 3){
return n;
}
else{
return Step(n - 1) + Step(n - 2);
}
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Step(n);
printf("%d\n", ret);
system("pause");
return 0;
}