780. 到达终点
给定四个整数 sx , sy ,tx 和 ty,如果通过一系列的转换可以从起点 (sx, sy) 到达终点 (tx, ty),则返回 true,否则返回 false。
从点 (x, y) 可以转换到 (x, x+y) 或者 (x+y, y)。
示例 1:
输入: sx = 1, sy = 1, tx = 3, ty = 5
输出: true
解释:
可以通过以下一系列转换从起点转换到终点:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
示例 2:
输入: sx = 1, sy = 1, tx = 2, ty = 2
输出: false
示例 3:
输入: sx = 1, sy = 1, tx = 1, ty = 1
输出: true
提示:
1 <= sx, sy, tx, ty <= 109
思路:非套路题,需要逆向思维+找规律。由sx->tx,sy->ty要么是前面加后面,要么是后面加前面,那此时可以从tx,ty来倒推。以(3,5)为例,肯定是后面加前面变化而来,因为没有负数,所以上一个肯定是(3,2),然后继续逆推就是(1,2),继续逆推就是(1,1),发现就是sx,sy。可以做一个优化,就是如果两个相差很大,比如(3,100),不需要一直用100-3,只需要100%3=1。
另外还要考虑整个过程中sx与tx,sy与ty的关系,一共6种情况
1、sx>tx,直接return false
2、sy>ty,直接return false
3、sx == tx && sy == ty 直接return true
4、sx<tx && sy == ty 直接让sx变化,判断tx-sx是否为sy的倍数,sy不动
5、sx==tx && sy<ty 直接让sy变化,判断ty-sy是否为sx的倍数,sx不动
6、sx<tx && sy <ty 两种动法
class Solution {
public boolean reachingPoints(int sx, int sy, int tx, int ty) {
//可以两种变化的情况
while(sx<tx && sy<ty){
if(ty>tx){
ty=ty%tx;
}else{
tx=tx%ty;
}
}
//不能再变了的情况
if(sx>tx || sy >ty){
return false;
}
//到达预期结果的情况
if(sx==tx && sy==ty){
return true;
}
//只有一种变化的情况
return sx==tx ? (ty-sy)%sx==0 : (tx-sx)%sy==0;
}
}