分式化简

题目

有一个同学在学习分式。他需要将一个连分数化成最简分数,你能帮助他吗?
在这里插入图片描述
连分数是形如上图的分式。在本题中,所有系数都是大于等于0的整数。
输入的cont代表连分数的系数(cont[0]代表上图的a0,以此类推)。返回一个长度为2的数组[n, m],使得连分数的值等于n / m,且n, m最大公约数为1。

示例 1:

输入:cont = [3, 2, 0, 2]
输出:[13, 4]
解释:原连分数等价于3 + (1 / (2 + (1 / (0 + 1 / 2))))。注意[26, 8], [-13, -4]都不是正确答案。

示例 2:

输入:cont = [0, 0, 3]
输出:[3, 1]
解释:如果答案是整数,令分母为1即可。

限制:

  1. cont[i] >= 0
  2. 1 <= cont的长度 <= 10
  3. cont最后一个元素不等于0
  4. 答案的n, m的取值都能被32位int整型存下(即不超过2 ^ 31 - 1)。

代码

class Solution {
public int[] fraction(int[] cont) {
//定义一个数组长度为 三
int[] res = new int[2];
res[0] = 1;
res[1] = 0;
for(int i = cont.length - 1; i >= 0; i–){
int temp1 = res[1];
res[1] = res[0];
res[0] = cont[i] * res[1] + temp1;
}
return res;
}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值