【LeetCode-中等】209.长度最小的子数组-双指针/滑动窗口

力扣题目链接

1. 暴力解法

这道题的暴力解法是两层嵌套for循环,第一层循环从 i = 0 开始遍历至数组末尾,第二层循环从 j = i 开始遍历至找到总和大于等于 target 的连续子数组,并将该连续子数组的长度与之前找到的子数组长度相比较,若这个子数组长度更短,则更新结果。并将初始长度设置为 INT32_MAXnums.size() + 1,用于判断是否不存在符合条件的子数组,通过判断结果是否被赋值,若未被赋值就返回0,说明没有符合条件的子序列。

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX; // 最终的结果
        int sum = 0; // 子序列的数值之和
        int subLength = 0; // 子序列的长度
        for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
            sum = 0;
            for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
                sum += nums[j];
                if (sum >= s) { // 一旦发现子序列和超过了s,更新result
                    subLength = j - i + 1; // 取子序列的长度
                    result = result < subLength ? result : subLength;
                    break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
                }
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

2. 滑动窗口

上述暴力解法提交会超时。
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果
在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。滑动窗口只用一个for循环来完成这个操作。

而这个循环的索引,一定是表示 滑动窗口的终止位置

下面是代码随想录中给出的运用滑动窗口解决问题的过程,非常的简洁明了:
209.长度最小的子数组

  • 窗口的结束位置 j 就是遍历数组的指针,也就是for循环里的索引。i 则代表窗口的起始位置。
  1. 窗口的结束位置 j 首先不断右移并执行 sum +=nums[j] 计算当前从指针 i 到 j 的子数组之和。
  2. sum >= target时,此时得到一个总和大于等于 target 的连续子数组,其长度为count = j - i + 1,此时需判断该长度是否比已记录的最短长度要小,若小于则更新最短长度。
  3. 随后,窗口的起始指针 i 开始左移,缩小窗口长度,注意可能存在左移后其子数组总和仍大于等于 target 的情况,所以此处判断应该是 while 而不是 for,还需要将 i 原来指向的数值在 sum 中减掉。
  4. 窗口的起始指针 i 左移至窗口中的子数组不满足条件时,此时需要结束指针 j 开始右移,直至窗口中的子数组再次满足条件,即跳转至第1步,当 j == nums.size() 时,表示数组内全部可能的子数组遍历完成,返回结果。
  5. 最后同样通过将初始长度设置为 INT32_MAXnums.size() + 1,判断是否不存在符合条件的子数组,通过判断结果是否被赋值,若未被赋值就返回0,说明没有符合条件的子序列。
//时间复杂度:O(n)
//空间复杂度:O(1)
class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int ans = nums.size() + 1;
        int sum = 0;
        for(int i = 0, j = 0; j < nums.size(); j++){
            sum +=nums[j];
            //注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while(sum >= target){
                int count = j - i + 1; //取子序列的长度
                if(count < ans){
                    ans = count;
                }
                //ans = ans < count ? ans : count;
                //这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
                sum -= nums[i];
                i++;
            }
        }
        //如果ans没有被赋值的话,就返回0,说明没有符合条件的子序列
        if(ans == nums.size() + 1) return 0;
        else return ans;
        //return ans == (nums.size() + 1) ? 0 : ans;
    }
};

关于时间复杂度,不要以为for里放一个while就以为是O(n^2), 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠问题和最优结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值