浅谈“杨辉三角”
杨辉三角应该是大家很早就接触到的一个数学知识,它不仅是高中数学的难题,更是刚接触“递归”的人必做的一道算法题。
它有很多有趣的性质:
- 每个数字等于上一行的左右两个数字之和,即 C(n+1,i) = C(n,i) + C(n,i-1)
- 每行数字左右对称,由 1 开始逐渐变大
- 第 n 行的数字有 n 项
- 第 n 行的第 m 个数和第 n - m + 1 个数相等 ,为组合数性质之一
- ( a + b )^n的展开式中的各项系数依次对应杨辉三角的第 ( n + 1 ) 行中的每一项
- 。。。
代码展示:
#include <stdio.h>
main()
{
int i,j,n=0,a[17]={0,1},l,r;
while(n<1 || n>16) //这一段,说实话,我一直没想明白为啥,但必须有[无奈]
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=1;i<=n;i++)
{
l=0;
for(j=1;j<=i;j++)
{
r=a[j];
a[j]=l+r; /*每个数是上面两数之和*/
l=r;
printf("%5d",a[j]); /*输出杨辉三角*/
}
printf("\n");
}
}
这种解法非常简便(对计算机来说),只使用了一个一维数组和两个临时变量。
问题引入——杨辉三角的扩展
1. 题目来源于 LeetCode 上第 118 号问题:杨辉三角。题目难度为 Easy,目前通过率为 61.8% 。
题目描述
给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。
输入: 5
输出:
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
题目解析:
这道题目在各大高校的习题中经常出现。
对于本题而言,利用性质 1 :每一行的首个和结尾一个数字都是 1,从第三行开始,中间的每个数字都是上一行的左右两个数字之和。
代码展示:
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> result = new ArrayList<>();
if (numRows < 1) return result;
for (int i = 0; i < numRows; ++i) {
//扩容
List<Integer> list = Arrays.asList(new Integer[i+1]);
list.set(0, 1); list.set(i, 1);
for (int j = 1; j < i; ++j) {
//等于上一行的左右两个数字之和
list.set(j, result.get(i-1).get(j-1) + result.get(i-1).get(j));
}
result.add(list);
}
return result;
}
}
2. 题目来源于 LeetCode 上第 119 号问题:杨辉三角II。题目难度为 Easy,目前通过率为 55.5% 。
题目描述
给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。
难度进阶:你可以优化你的算法到 O(k) 空间复杂度吗?
(要知道,O(n)复杂度最直观的方式是只有一层n循环)
这道题目的难点与思考点在于题目有额外限制条件,程序只能使用 O(k) 的额外空间,因此无法通过累加的方式将每一行都输出打印。
这里依旧使用杨辉三角的规律,很隐藏的规律:对于杨辉三角的同一行,第 ( i + 1) 项是第 i 项的( k - i ) /( i + 1 ) 倍。
比如:
第 k 索引行的第 0 项:1
第 k 索引行的第 1 项:1 * k
第 k 索引行的第 2 项:1 * k * ( k - 1) / 2
第 k 索引行的第 3 项:[1 * k * ( k - 1) / 2 ] * ( k - 2 ) / 3
代码实现:
class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> res = new ArrayList<>(rowIndex + 1);
long index = 1;
for (int i = 0; i <= rowIndex; i++) {
res.add((int) index);
index = index * ( rowIndex - i ) / ( i + 1 );
}
return res;
}
}
好了,至此,本篇就结束了。。。