查找

静态查找 :不涉及插入和删除操作的查找 。
动态查找 :涉及插入和删除操作的查找。

静态查找适用于:查找集合一经生成,便只对其进行查找,而不进行插入和删除操作; 或经过一段时间的查找之后,集中地进行插入和删除等修改操作;
动态查找适用于:查找与插入和删除操作在同一个阶段进行,例如当查找成功时,要删除查找到的记录,当查找不成功时,要插入被查找的记录。
查找结构 :面向查找操作的数据结构 ,即查找基于的数据结构。

基本思想:
从线性表的一端向另一端逐个将关键码与给定值进行比较,
若相等,则查找成功,给出该记录在表中的位置;
若整个表检测完仍未找到与给定值相等的关键码,则查找失败,给出失败信息。

哨兵就是待查值,
将哨兵放在查找方向的尽头处,
免去了在查找过程中每一次比较后都要判断查找位置是否越界,从而提高查找速度。
改进的顺序查找
基本思想:设置“哨兵”。哨兵就是待查值,将它放在查找方向的尽头处,免去了在查找过程中每一次比较后都要判断查找位置是否越界,从而提高查找速度。
顺序查找查找性能的改进方法
记录每个数据的访问频率,把访问频率高的数据移向顺序表的右端可以减少查找成功时所进行的比较次数,提高效率
构造有序的顺序表
减少查找失败时所进行的比较次数,提高查找效率
此时的查找失败的查找长度?
顺序查找的优点:算法简单而且使用面广。
对表中记录的存储结构没有任何要求,顺序存储链接存储均可;
对表中记录的有序性也没有要求,无论记录是否按关键码有序均可。
顺序查找的缺点:平均查找长度较大,特别是当待查找集合中元素较多时,查找效率较低
折半查找适用条件:线性表中的记录必须按关键码有序;必须采用顺序存储。
基本思想:
在有序表中(low, high,low<=high),
取中间记录作为比较对象,若给定值与中间记录的关键码相等,则查找成功;若给定值小于中间记录的关键码,则在中间记录的左半区继续查找;若给定值大于中间记录的关键码,则在中间记录的右半区继续查找。不断重复上述过程,直到查找成功,或所查找的区域无记录,查找失败。

折半查找判定树
判定树:折半查找的过程可以用二叉树来描述,
树中的每个结点对应有序表中的一个记录,
结点的值为该记录在表中的位置。
通常称这个描述折半查找过程的二叉树为折半查找判定树,简称判定树。
⑴ 当n=0时,折半查找判定树为空;
⑵ 当n>0时,
  折半查找判定树的根结点为mid=(n+1)/2,
  根结点的左子树是与有序表r[1] ~ r[mid-1]相对应的折半查找判定树,
  根结点的右子树是与r[mid+1] ~ r[n]相对应的折半查找判定树。
判定树的特点
任意两棵折半查找判定树,若它们的结点个数相同,则它们的结构完全相同
具有n个结点的折半查找树的高度为
判定树的性质
任意结点的左右子树中结点个数最多相差1
任意结点的左右子树的高度最多相差1
任意两个叶子所处的层次最多相差1
折半查找性能分析
具有n个结点的折半查找判定树的深度为
查找成功:在表中查找任一记录的过程,即是折半查找判定树中从根结点到该记录结点的路径,和给定值的比较次数等于该记录结点在树中的层数。

查找不成功:
查找失败的过程就是走了一条从根结点到外部结的路径,和给定值进行的关键码的比较次数等于该路径上内部结点的个数(失败情况下的平均查找长度等于树的高度)。
线性表查找的特点
线性表查找是静态的查找,要在线性表上进行动态查找,存在以下的问题
无序顺序表上进行动态查找,插入操作简单,但找的复杂性高
有序顺序表上进行动态查找,查找的时间复杂性好,但是插入操作时间复杂性
单链表上进行动态查找,插入操作简单,但查找操作复杂性高
解决办法:             
采用二叉树这种数据结构,实现动态查找
二叉排序树(Binary Search Tree)
二叉排序树(也称二叉查找树):或者是一棵空的二叉树,或者是具有下列性质的二叉树:
⑴若它的左子树不空,则左子树上所有结点的值均小于根结点的值
⑵若它的右子树不空,则右子树上所有结点的值均大于根结点的值;
⑶ 它的左右子树也都是二叉排序树。
二叉排序树的插入
分析:若二叉排序树为空树,则新插入的结点为新的根结点;否则,新插入的结点必为一个新的叶子结点,其插入位置由查找过程得到。
若二叉排序树为空树,则新插入的结点为新的根结点;
否则,如果插入的值比根节点值大,则在右子树中进行插入;否则,在左子树中进行插入。
递归。
二叉排序树的构造
从空的二叉排序树开始,依次插入一个个结点 。
二叉排序树的删除
在二叉排序树上删除某个结点之后,仍然保持二叉排序树的特性。
分三种情况讨论:
被删除的结点是叶子;
被删除的结点只有左子树或者只有右子树;
被删除的结点既有左子树,也有右子树。
二叉排序树的删除算法——伪代码
若结点p是叶子,则直接删除结点p;
2. 若结点p只有左子树,   则只需重接p的左子树;
    若结点p只有右子树,  则只需重接p的右子树;
3. 若结点p的左右子树均不空,则
   3.1 查找结点p的右子树上的最左下结点s及s双亲结点par;
   3.2 将结点s数据域替换到被删结点p的数据域;
   3.3 若结点p的右孩子无左子树,
         则将s的右子树接到par的右子树上
若结点p是叶子,则直接删除结点p;
2. 若结点p只有左子树,则只需重接p的左子树;
    若结点p只有右子树,则只需重接p的右子树;
3. 若结点p的左右子树均不空,则
   3.1 查找结点p的右子树上的最左下结点s及s双亲结点par;
   3.2 将结点s数据域替换到被删结点p的数据域;
   3.3 若结点p的右孩子无左子树,
         则将s的右子树接到par的右子树上;
         否则,将s的右子树接到结点par的左子树上;
   删除结点s;
二叉排序树的查找
在二叉排序树中查找给定值k的过程是:
⑴ 若root是空树,则查找失败;
⑵ 若k=root->data,则查找成功;否则
⑶ 若k<root->data,则在root的左子树上查找否则
⑷ 在root的右子树上查找。
     上述过程一直持续到k被找到或者待查找的子树为空,如果待查找的子树为空,则查找失败。
二叉排序树的查找效率在于只需查找二个子树之一。
平衡二叉树(AVL树)
平衡二叉树:或者是一棵空的二叉排序树,或者是具有下列性质的二叉排序树:
⑴ 根结点的左子树和右子树的深度最多相差1;
⑵ 根结点的左子树和右子树也都是平衡二叉树。
平衡因子:结点的平衡因子是该结点的左子树的深度与右子树的深度之差。
最小不平衡子树:在平衡二叉树的构造过程中,以距离插入结点最近的、且平衡因子的绝对值大于1的结点为根的子树。
基本思想:
在构造二叉排序树的过程中,每插入一个结点时,首先检查是否因插入而破坏了树的平衡性,
若是,
  则找出最小不平衡子树,
  在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。
树表的查找技术
B-树
m阶B-树:是满足下列特性的树:
树中每个结点至多有m棵子树;
(2) 若根结点不是终端结点,则至少有两棵子树;
除根结点外,其他非终端结点至少有ém/2ù 棵子树;
(4)所有非终端结点都包含以下数据:
    (n,A0,K1,A1,K2,…,Kn,An)
n(ém/2ù -1≤n≤m -1)为关键码的个数;
      Ki(1≤i≤n)为关键码,且Ki<Ki+1(1≤i≤n-1);
      Ai(0≤i≤n)为指向子树根结点的指针,且指针Ai所指子树中所有结点的关键码均小于Ki+1大于Ki。
(5)所有叶子结点都在同一层上,B树是高平衡的。
B-树的插入    
基本原理
当一个节点中插入新的数据时,
会造成节点中数据个数大于(m-1),
此时需要分裂节点,
将节点中第[m/2]+1个数据插入到当前节点的前驱中,
当前节点分裂为两个节点。
删除小结: 在B-树最下层节点中删除一个关键字
当最下层结点中的关键字数大于ém/2ù -1 时,可直接删除。
当最下层待删关键字所在结点中关键字数目为最低要求ém/2ù -1时,如果其左(右)兄弟中关键字数目大于ém/2ù -1,则可采用“父子换位法”。
当最下层待删结点及其左右兄弟中的关键字数目均为最低要求数目ém/2ù -1时,需要进行合并处理,合并过程与插入时的分裂过程“互逆”,合并一次, 分支数少一,可能出现 “连锁合并”, 当合并到根时, 各分支深度同时减1。
在B-树中删除一个关键字-非最下层节点中删除
基本原则:在保持有序性、平衡性的前提下,进行操作
B+树的结构定义
m阶B+树的结构定义如下:
 (1)每个结点至多有m个子结点;
(2)每个结点(除根外)至少有ceiling(m/2)个子结点;
(3)根结点至少有两个子结点;
(4)有k个子结点的结点必有k个关键码。
B+树
m阶B+树:是满足下列特性的树:
⑴ 含有m个关键码,每一个关键码对应一棵子树。
⑵ 关键码Ki是它所对应的子树的根结点中的最大(或最小)关键码。
⑶ 所有终端结点中包含了全部关键码信息,以及指向关键码记录的指针。
⑷ 所有终端结点按关键码的大小链在一起,形成单链表,并设置头指针。
B+树的查找
查找应该到叶结点层
在上层已找到待查的关键码,并不停止
而是继续沿指针向下一直查到叶结点层的这个关键码
 B+树的叶结点一般链接起来,形成一个双链表
适合顺序检索(范围检索)
B-树和B+树
特点   对于阶数相同的两棵树,每个节点所包含的分支数的定义相同(不能少于m/2,不能多于m)
每个节点所包含的关键字的个数不同
B-树中,关键字不重复出现;B+树中,叶子节点存放所有的关键字,内部结点存储着其后继节点中最大的关键字
插入操作都会引起节点的分裂
删除操作都会引起节点的合并
B-树适用于随机检索;B+树支持随机和顺序检索
散列表(hash)的查找技术
散列函数的构造
直接定址法除留余数法数字分析法平方取中法折叠法(分段叠加法)冲突处理方法开放定址法链地址法建立公共溢出区
散列的基本思想:在记录的存储地址和它的关键码之间建立一个确定的对应关系。这样,不经过比较,一次读取就能得到所查元素的查找方法。
散列表:采用散列技术将记录存储在一块连续的存储空间中,这块连续的存储空间称为散列表。
散列函数:将关键码映射为散列表中适当存储位置的函数。
散列地址:由散列函数所得的存储位置址 
散列技术一般不适用于允许多个记录有同样关键码的情况。
有冲突,降低了查找效率,体现不出计算式查找的优点
散列方法也不适用于范围查找
不能查找最大值、最小值
也不可能找到在某一范围内的记录。
散列技术的关键问题:
⑴ 散列函数的设计。如何设计一个简单、均匀、存储利用率高的散列函数。
⑵ 冲突的处理。如何采取合适的处理冲突方法来解决冲突。
冲突:对于两个不同关键码ki≠kj,有H(ki)=H(kj),即两个不同的记录需要存放在同一个存储位置,ki和kj相对于H称做同义词。
设计散列函数一般应遵循以下原则:
⑴ 计算简单。散列函数不应该有很大的计算量,否则会降低查找效率。
⑵ 函数值即散列地址分布均匀。函数值要尽量均匀散布在地址空间,这样才能保证存储空间的有效利用并减少冲突。
散列函数是关键码的线性函数,即:
(key) = a ´ key + b  (a,b为常数)
散列函数为:
H(key)=key  mod  p
散列函数——除留余数法
一般情况下,选p为小于或等于表长(最好接近表长)的最小素数
散列函数——数字分析法
根据关键码在各个位上的分布情况,选取分布比较均匀的若干位组成散列地址。
适用情况:
事先知道关键码的分布,
关键码的分布均匀
散列函数——平方取中法
对关键码平方后,按散列表大小,取中间的若干位作为散列地址(平方后截取)。
适用情况:
事先不知道关键码的分布且关键码的位数不是很大。
散列函数——折叠法
将关键码从左到右分割成位数相等的几部分,将这几部分叠加求和,取后几位作为散列地址。
关键码位数很多,事先不知道关键码的分布。
处理冲突的方法——开放定址法
由关键码得到的散列地址一旦产生了冲突,就去寻找下一个空的散列地址,并将记录存入。
如何寻找下一个空的散列地址?
(1)线性探测法
(2)二次探测
(3)随机探测法
(4)再hash法
用开放定址法处理冲突得到的散列表叫闭散列表。
线性探测法
当发生冲突时,从冲突位置的下一个位置起,依次寻找空的散列地址。
对于键值key,设H(key)=d,闭散列表的长度为m,则发生冲突时,寻找下一个散列地址的公式为
      Hi=(H(key)+di) % m   (di=1,2,…,m-1)
二次探测法
当发生冲突时,寻找下一个散列地址的公式为:                     Hi=(H(key)+di)% m
(di=12,-12,22,-22,…,q2,-q2且q≤m/2)
随机探测法
当发生冲突时,下一个散列地址的位移量是一个随机数列,即寻找下一个散列地址的公式为:                         Hi=(H(key)+di)% m   
(di是一个随机数列,i=1,2,……,m-1)
处理冲突的方法——拉链法(链地址法)
基本思想:将所有散列地址相同的记录,即所有同义词的记录存储在一个单链表中(称为同义词子表),在散列表中存储的是所有同义词子表的头指针。
用拉链法处理冲突构造的散列表叫做开散列表。
处理冲突的方法——公共溢出区
基本思想:
散列表包含基本表和溢出表两部分(通常溢出表基本表的大小相同),
将发生冲突的记录存储在溢出表中。
查找时,对给定值通过散列函数计算散列地址,先与基本表的相应单元进行比较,若相等,则查找成功;否则,再到溢出表中进行顺序查找。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值