题目描述
如果一个数在二进制下0的个数比一的个数多,则称这个数位round number,问在l~r中有多少这样的数 (1 ≤ Start < Finish ≤ 2,000,000,000).
Input 输入l,r。
Output 输出个数
Sample Input
2 12
Sample Output
6
思路:先将数n转化成二进制,然后就成了基础的数位DP裸题,需要注意的是前导零的存在。
#include<iostream>
#include<cstring>
#define ll long long
using namespace std;
ll dp[40][40][40];//dp[i][num0][num1]记录当前为i位时,num0:0的个数,num1:1的个数
int a[40];
ll dfs(int pos,int num0,int num1,bool lead,bool limit){
if(pos==0){
if(lead) return 1;//全部都是零的情况
return num0>=num1?1:0;//递归终止条件
}
if(!limit&&dp[pos][num0][num1]!=-1&&!lead) return dp[pos][num0][num1];//对于有限制条件的不满足dp数组记录的情况,同时存在前导零的使得num0、num1与pos不再匹配,也没这样的情况。
int up=limit?a[pos]:1;//寻找上界
ll ans=0;
for(int i=0;i<=up;i++){
if(lead){//前导零存在分情况讨论
if(i) ans+=dfs(pos-1,0,1,0,limit&&i==a[pos]);//清空num0、num1为1,因为这是从最高位为1开始,当然只有一个1.
else ans+=dfs(pos-1,0,0,1,limit&&i==a[pos]);//前导零仍然存在
}
else {
if(i) ans+=dfs(pos-1,num0,num1+1,0,limit&&i==a[pos]);//选择num1、num0的个数
else ans+=dfs(pos-1,num0+1,num1,0,limit&&i==a[pos]);
}
}
if(!limit&&!lead) dp[pos][num0][num1]=ans;//和前面的一致只记录无限制和非前导零的情况。
return ans;
}
ll solve(int n){
int pos=0;
while(n){
a[++pos]=n%2;
n/=2;
}
return dfs(pos,0,0,1,1);
}
int main()
{
int l,r;
memset(dp,-1,sizeof(dp));
cin>>l>>r;
cout<<solve(r)-solve(l-1)<<endl;
}