什么是高精度?
运算过程中,输入、中间结果、输出都有可能超过long long 的表示范围,如果进行加、乘操作,导致溢出,结果出错。
problem A+B (0 < A, B < 10^500 )自然无法用long long计算
在java中有大数的专属类,可以使用,如果水平高的话,也可以查看类源码学习一下实现。
高精度使用数组一个元素模拟一位,以此来拓宽位数,同时每次先运算后进位。数组低位存储数字低位,比如x=123 a[1]=3 a[2]=2 a[3]=1
。
输出时应该逆序输出(0000……123) -去前导零->(123)。
高精度加法实现
洛谷高精度加法模板题,求解A+B
#include<bits/stdc++.h>
using namespace std;
//!!!重点高精度并不是只进行有效位的运算,为了实现简单,前缀0也会跟着运算
#define m 2010
int n;
int a[m];
int main()
{
string s1,s2;
cin>>s1>>s2;
//0+s1+s2
//各位相加,不进位 0+s1
for(int i=s1.length()-1,j=1;i>=0;i--,j++){
a[j]+=s1[i]-'0';
}
//0+s1+s2
for(int i=s2.length()-1,j=1;i>=0;i--,j++){
a[j]+=s2[i]-'0';
}
//进位:进位法则低位每超过进一位,保留个位
for(int i=0;i<2010;i++){
a[i+1]+=a[i]/10;
a[i]%=10;
}
//输出,一定要逆序输出!!!同时去掉前缀0
int j=2002;
for(;j;j--) if(a[j]) break;
if(j!=0){
for(;j;j--) cout<<a[j];
}else cout<<0<<endl;
}
高精度乘法实现
洛谷模板题 A*B
类似于计组中四则运算,理解手算是理解高精度的关键。想一下如何实现第一位 * A,然后第二位推进一位再 * A ……
#include<bits/stdc++.h>
using namespace std;
#define NUM 4010
int a[NUM+10],b[NUM+10],ans[2*NUM+10];
int main()
{
string s1,s2;
cin>>s1>>s2;
for(int i=s1.length()-1,k=0;i>=0;i--,k++) a[k]=s1[i]-'0';
for(int i=s2.length()-1,k=0;i>=0;i--,k++) b[k]=s2[i]-'0';
//cout<<"*"<<endl;
for(int i=0;i<NUM;i++){
for(int j=0;j+i<NUM;j++){//需要注意这里,不要越界哦
ans[j+i]+=a[j]*b[i];//ans[j+i] i为推进的位数 b的第i位乘以a
}
//进位
for(int j=0;j<NUM;j++){
ans[j+1]+=ans[j]/10;
ans[j]%=10;
}
}
//逆序输出
int i=NUM;
while(ans[i]==0&&i>=0) i--;
//如果全部为0的话就什么也输出不了了,需要特判
if(i==-1){
cout<<0<<endl;
return 0;
}
while(i>=0) cout<<ans[i--];
}
高精度应用题-阶乘之和
高精度乘法,两个乘数可能有一个为int型,这样的话就不需要第二层循环,直接乘就好了(数据范围内int如果越界的话用longlong代替)。
#include<bits/stdc++.h>
using namespace std;
#define m 100
int n;
int a[m+1],sum[m+1],b[m+1];
//a数组存储被乘数,b[]存储中间运算各位,sum数组存储累加和
//需要注意:比如123 a[1]=3 a[2]=2 a[3]=1
//输出时应该逆序输出(0000……123) -去前导零->(123)
int main()
{
cin>>n;
a[1]=1;
for(int i=1;i<=n;i++){
int x=i;
int cnt=0;
memset(b,0,sizeof(b));
while(x){
int y=x%10;x/=10;
for(int j=1;j<m;j++) b[j+cnt]+=y*a[j];//不进位乘法运算
for(int j=1;j<m;j++){//进位
b[j+1]+=b[j]/10;
b[j]=b[j]%10;
}
++cnt;
}
for(int j=1;j<m;j++){
sum[j]+=b[j];
a[j]=b[j];
}
//进位加法运算
for(int j=1;j<m;j++){//进位
sum[j+1]+=sum[j]/10;
sum[j]=sum[j]%10;
}
}
int j;
for(j=m;j>0;j--)
if(sum[j]!=0) break;
for(;j>0;j--) cout<<sum[j];
}
与上一道类似的题目阶乘数码
题目
麦森数 求解2^p p范围较大后500位
,快速幂+高精度 高精度自动取模后500位
#include<bits/stdc++.h>
using namespace std;
#define NUM 1000
//麦森数计算 快速幂+高精度
/*
B=c0*2^0+c1*2^1……cn*2^n ci仅取 1,0
A^B=A^(c0*2^0)*A^(c1*2^1)*……*A^(cn*2^n)
*/
int a[NUM+5],ans[NUM+5],b[NUM+5],tmp[NUM+5],p;
void mul(int *x,int *y,int *res){//res=x*y
memset(tmp,0,sizeof(tmp));
for(int i=1;i<=NUM;i++){
for(int j=1;j+i-1<=NUM;j++){
tmp[i+j-1]+=x[j]*y[i];
}
for(int j=1;j<=NUM;j++){
tmp[j+1]+=tmp[j]/10;
tmp[j]%=10;
}
}
for(int i=NUM;i>0;i--) res[i]=tmp[i];
//cout<<endl;
}
void pow(){
int x=p;
while(x){
if(x&1) mul(ans,a,ans);
mul(a,a,a);
x>>=1;
}
}
int getNum(int p)
{
//2^p 最后一位为2 4 8 6,所以2^p-1 与2^p位数相同
//2^p=10^n n必须向上取整 pln2=n ln10 n=p*(ln2/ln10)
//计组中有相似题目,比如5位10进制数至少需要几位二进制表示
return ceil( p*log(2)/log(10));
}
int main()
{
cin>>p;
cout<<getNum(p)<<endl;
a[1]=2;
ans[1]=1;
pow();
ans[1]--;
int i=500;
//while(ans[i]==0&&i>0) i--;
for(int cnt=1;i>0;i--,cnt++){
cout<<ans[i];
if(cnt%50==0) cout<<endl;
}
}
最大乘积
可能结果超出基础数据类型范围,需要使用高精度。
这道题主要是贪心思想,高精度是辅助,需要自己理解,可以参考洛谷的题解。
#include<bits/stdc++.h>
using namespace std;
#define NUM 1000
int a[NUM+10];
int n;
vector<int>v;
void find_(){//寻找数集合
int sum=n;
for(int i=2;sum>0&&i<=n;i++){
//printf("sum=%d i=%d\n",sum,i);
if(sum-i>=0){
v.push_back(i);
sum-=i;
}else{
int tmp=sum;
sum=0;
int len=v.size();
for(int j=len-1;tmp>0;j=(j+len-1)%len){
v[j]++;
tmp--;
}
}
}
}
void mul(int x){
for(int j=1;j<=NUM;j++) a[j]*=x;
for(int j=1;j<=NUM;j++){
a[j+1]+=a[j]/10;
a[j]%=10;
}
}
int main()
{
cin>>n;
find_();
a[1]=1;
for(int i=0;i<v.size();i++){
mul(v[i]);
cout<<v[i]<<' ';
}
cout<<endl;
int i=NUM;
while(a[i]==0&&i>0) i--;
for(;i>0;i--) cout<<a[i];
}