吴恩达-机器学习
发呆少女
这个作者很懒,什么都没留下…
展开
-
15、异常检测
"""这部分,您将实现一个异常检测算法来检测服务器计算机中的异常行为。他的特征是测量每个服务器的响应速度(mb/s)和延迟(ms)。当你的服务器运行时,你收集到了m=307的样本,是无标签的。你相信其中绝大多数样本是正常的,但还是有一小部分的样本是异常的。我们将使用高斯分布模型来检测数据集中的异常样本。"""import pandas as pdimport numpy as npfrom scipy.io import loadmatimport matplotlib.pyplot原创 2021-02-18 20:09:07 · 210 阅读 · 1 评论 -
14、降维,PCA算法
课后作业倒数第二个 PCA原创 2021-02-18 14:49:35 · 244 阅读 · 1 评论 -
13、K-means算法,无监督学习
"""在这个练习中,您将实现K-means算法并将其用于图像压缩。通过减少图像中出现的颜色的数量,只剩下那些在图像中最常见的颜色。"""import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom scipy.io import loadmatnumpy的广播机制:...原创 2021-02-17 19:10:52 · 166 阅读 · 1 评论 -
12、邮件分类实例
"""这部分用SVM建立一个垃圾邮件分类器。你需要将每个email变成一个n维的特征向量,这个分类器将判断给定一个邮件x是垃圾邮件(y=1)或不是垃圾邮件(y=0)。"""# 先来看一个邮件的数据集例子with open('data/emailSample1.txt', 'r') as f: # r:以只读方式打开文件。文件的指针将会放在文件的开头。 print(f.read())'''> Anyone knows how much it costs to host a原创 2021-02-01 11:39:52 · 522 阅读 · 2 评论 -
11、支持向量机
"""SVM支持向量机"""import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sbfrom scipy.io import loadmatfrom sklearn import svmmat = loadmat('data/ex6data1.mat')# print(mat.keys()) # 打印关键字'''打印结果: dict_keys(['__header原创 2021-01-30 22:04:41 · 243 阅读 · 1 评论 -
10、欠或过拟合的学习曲线,运用验证集选取正则化的L值
'''在本练习中,您将实现正则化的线性回归和多项式回归,并使用它来研究具有不同偏差-方差属性的模型.在前半部分的练习中,你将实现正则化线性回归,以预测水库中的水位变化,从而预测大坝流出的水量。在下半部分中,您将通过一些调试学习算法的诊断,并检查偏差 v.s. 方差的影响。我们将从可视化数据集开始,其中包含水位变化的历史记录,x,以及从大坝流出的水量,y。这个数据集分为了三个部分:training set 训练集:训练模型cross validation set 交叉验证集:选择正则化参数te原创 2021-01-28 17:53:36 · 287 阅读 · 0 评论 -
9、反向传播
'''识别书写数字例子:反向传播,学习神经网络的参数。'''import numpy as npimport matplotlib.pyplot as pltfrom scipy.io import loadmatimport scipy.optimize as optfrom sklearn.metrics import classification_report# 加载数据集def load_mat(path): data = loadmat(path) # loadm原创 2020-12-18 13:33:33 · 206 阅读 · 0 评论 -
8、神经网络
'''预测手写数字使用多类logistic回归不能形成更复杂的假设,因为它只是一个线性分类器。神经网络可以实现非常复杂的非线性的模型。利用已经训练好了的权重进行预测。'''import numpy as npfrom scipy.io import loadmat# 加载权重数据def load_weight(path): data = loadmat(path) return data['Theta1'], data['Theta2']# 加载权重数据thet原创 2020-12-18 12:49:37 · 195 阅读 · 0 评论 -
7、多元逻辑分类
'''多元分类(多个logistic回归)'''import numpy as npimport matplotlib.pyplot as pltfrom scipy.io import loadmatfrom scipy.optimize import minimize'''其中有5000个训练样本,每个样本是20*20像素的数字的灰度图像。每个像素代表一个浮点数,表示该位置的灰度强度。20×20的像素网格被展开成一个400维的向量。在我们的数据矩阵X中,每一个样本都变成了一行,这原创 2020-12-18 12:45:48 · 386 阅读 · 0 评论 -
6、正则化逻辑回归,扩大特征值,曲线决策边界
'''加入正则项提升逻辑回归算法。它使算法更倾向于“更简单”的模型(在这种情况下,模型将有更小的系数)。这个理论助于减少过拟合,提高模型的泛化能力。设想你是工厂的生产主管,你有一些芯片在两次测试中的测试结果。对于这两次测试,你想决定是否芯片要被接受或抛弃。为了帮助你做出艰难的决定,你拥有过去芯片的测试数据集,从其中你可以构建一个逻辑回归模型。'''import numpy as npimport pandas as pdimport matplotlib.pyplot as pltim原创 2020-12-18 12:35:08 · 546 阅读 · 0 评论 -
5、逻辑回归求参数,直线决策边界
'''在这部分的练习中,你将建立一个逻辑回归模型来预测一个学生是否能进入大学。假设你是一所大学的行政管理人员,你想根据两门考试的结果,来决定每个申请人是否被录取。你有以前申请人的历史数据,可以将其用作逻辑回归训练集。对于每一个训练样本,你有申请人两次测评的分数以及录取的结果。为了完成这个预测任务,我们准备构建一个可以基于两次测试评分来评估录取可能性的分类模型。'''import numpy as npimport pandas as pdimport matplotlib.pyplot a原创 2020-12-18 12:24:59 · 569 阅读 · 0 评论 -
4、正规方程直接求回归参数
# '''# 使用正规方程,求解最合适的theta值# 假设你是一家餐馆的首席执行官,正在考虑不同的城市开设一个新的分店。你有来自城市的利润和人口数据。# 您希望使用这些数据来帮助您选择将哪个城市扩展到下一个城市。# '''import numpy as npimport pandas as pd# 数据文件路径path = 'data/ex1data1.txt'# 读取数据文件:path(文件路径),header(列名),names(要使用的数据列名)# header=None时,即原创 2020-12-18 12:11:32 · 229 阅读 · 1 评论 -
3、使用scikit-learn模型来进行线性回归
# '''# 使用scikit-learn的线性回归函数# 假设你是一家餐馆的首席执行官,正在考虑不同的城市开设一个新的分店。你有来自城市的利润和人口数据。# 您希望使用这些数据来帮助您选择将哪个城市扩展到下一个城市。# '''from sklearn import linear_modelimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 数据文件路径path = 'data/ex1data1.t原创 2020-12-18 12:08:31 · 636 阅读 · 0 评论 -
2、多变量线性回归+特征缩放
'''多变量线性回归:预测房屋价格,其中有2个特征:房子的大小,卧室的数量。'''import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 数据文件路径path = 'data/ex1data2.txt'# 读取数据文件:path(文件路径),header(列名),names(为数据命名)# header=None时,即指明原始文件数据没有列索引,这样read_csv会自动加上列索引,除非你给定列索引的名字原创 2020-12-18 12:00:47 · 270 阅读 · 0 评论 -
1、单变量线性回归
'''在本部分的练习中,您将使用一个变量实现线性回归,以预测食品卡车的利润。假设你是一家餐馆的首席执行官,正在考虑不同的城市开设一个新的分店。该连锁店已经在各个城市拥有卡车,而且你有来自城市的利润和人口数据。您希望使用这些数据来帮助您选择将哪个城市扩展到下一个城市。'''import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 数据文件路径path = 'data/ex1data1.txt'# 读取数据文原创 2020-12-18 11:57:44 · 290 阅读 · 0 评论