第二十三天,今天看了约数的有关内容,最大公约数的求法,欧几里得算法,既gcd(a,b)=gcd(b,a mod b);这个如何求证在书上的内容利用前面的内容一步步求解出来,非常明了,之后是一道例题,再之后就是欧拉函数,了解欧拉函数之前先了解一下互质,既gcd(a,b)=1,既两个质数,欧拉函数则是一个公式,书上有推导过程,很严谨,再之后就是欧拉函数的性质以及积性函数,积性函数是如果a,b互质,那么f(ab)=f(a)*f(b),那么f则是积性函数,之后就是同余,就是余数相同,前提是除数相同,有了同余数后面还有有关的扩展欧几里得算法以及欧拉定理,这些内容没有看完,,
加油,臭咸鱼!!